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Abstract

We present a new hierarchical texture segmenta-
tion method that partitions an image into textured re-
gions. A textured region is viewed as a set of uni-
formly distributed primitives. A primitive is a region
with constant gray values. Gray values within a prim-
itive can be corrupted by noise. Any noisy primi-
tive contains gray values from a b-wide interval (§-
homogeneous primitive). The noisy primitive is de-
scribed by the mean of interior gray values. A textured
region with notse is characterized by a set of gray value
means (texture dictionary) derived from noisy primi-
tives. Every pizel (sample point) and its neighborhood
give rise to an estimate of texture dictionary. Com-
ponents of the estimated dictionary at a pizel char-
acterize noisy primitives of a textured region grown
from the pizel. Co-occurrence of noisy primitives from
this grown region are calculated. Final segmentation is
obtained by grouping pizels with identical dictionaries
and co-occurrences created at each pizel. Homogene-
ity degree & of noisy primitives provides a framework
for multiscale analysis. Computational efficiency and
robustness of the proposed method are related. Experi-
ments are reported for synthetic and real textures from
Brodatz album and real scenes.

1 Introduction

The goal of any image segmentation is to partition
an image (grid of samples) into connected subsets of
samples, denoted as regions, each having a uniform
texture. Textures have no universal model. A variety
of texture models have been derived from: (1) per-
ceptual studies [9, 8, 6] (mimicking humans), (2) spe-
cific two-dimensional tasks [13], such as, automated
surface inspection (textile, paint), medical image pro-
cessing (semi-automated search for tissues, tumors),
(3) texture gradient analyses [3, 2] (projective distor-
tion problem) and (4) texture imitation [10, 5] (realism
in computer graphics). Texture segmentation meth-
ods have been based on two types of models: statisti-

cal [7, 5] and structural methods [14, 12], which can
be alternately viewed as pixel-based and region-based
models [11]. The motivation for the work described in
this paper is to develop a robust and computationally
efficient hierarchical texture segmentation method.

Following are some salient characteristics of the
work presented in this paper. (1) It demonstrates sat-
isfactory segmentation performance of the statistical-
structural approach to texture modeling ([14, 7, 1]) (2)
It uses second order (co-occurrence) statistics of re-
gions [7] that are themselves derived by grouping pix-
els and are therefore unrestricted in the size and shape
they assume; in contrast co-occurrence has mostly
been considered for pixel properties in the past work.
(3) It provides a mechanism for tradeoff between com-
putational requirements and robustness of the segmen-
tation obtained. (4) Segmentation is hierarchical and
autonomous; the hierarchical segmentation derived is
indexed by a scale parameter.

Our work here takes a structural-statistical ap-
proach. First in Sec. 2, an idealized textured region
Cy is modelled as a set of uniformly distributed, arbi-
trary shaped primitives. A primitive is a region with
constant gray values'. Gray values within a prim-
itive can be corrupted by noise. Any noisy primi-
tive contains gray values from a é-wide interval (é-
homogeneous primitive). The noisy primitive is char-
acterized by the mean of interior gray values. A tex-
tured region C} with noise is characterized by a set of
gray value means (texture dictionary %), which is the
set of the means of the noisy primitives. Observable
(realistic) textures are derived from the ideal textures
by creating perturbations in the (1) primitive model,
(2) primitive distribution and (3) amount of noise in
primitives. Other issues, such as, variable size of tex-
ture dictionary and partially different dictionaries of
two textures (dictionary overlaps), are considered.

Given an image and the texture model, a new tex-

1Gray value is later replaced with the term attribute.



ture segmentation method is described in Sec. 3. First,
the maximum possible size of texture dictionary is es-
timated. This size of dictionaries guarantees that a
global behavior of textures is captured. Second, tex-
ture dictionaries are estimated at every pixel (sample
point) from the neighborhood of a pixel. Components
of the estimated dictionary at a pixel characterize
noisy primitives of a textured region grown from the
pixel. This grown region is a pixel driven, global, spa-
tially irregular estimation of a textured region. Third,
co-occurrence of primitives from this grown textured
region are calculated. Lastly, a final segmentation is
obtained by grouping pixels with identical dictionaries
and co-occurrences of corresponding primitives. Ro-
bustness against variations of the texture model ob-
served in realistic textures is analyzed. Computational
efficiency and robustness of the proposed method are
related.

In Sec. 4, multiple texture segmentations are per-
formed for various degrees of homogeneity 6 (called
scale parameter) within a primitive. A hierarchy of
detected regions is identified by allowing regions only
to grow for increasing values of 6.

Sec. 5 shows performance evaluation on synthetic
images (robustness and efficiency) and Brodatz and
real scene textures. Concluding remarks are stated in

Sec. 6.
2 Modelled and Observable Textures

A certain degree of mathematical formalism is
needed before the segmentation method is proposed
in Sec 3.

2.1 Image and segmentation

Input data, a two-dimensional image, is represented
by a function #; — f(x;), where z; is a sample point
z; = (21, 22) in the domain of function f and f(z;) is
the function value denoted as attribute at each loca-
tion pointed to by sample point z;. The goal of texture
image segmentation is to partition the sample points
z; in an image into sets of connected sample points,
denoted as regions, such that each region consists of
uniformly distributed primitives.

2.2 Texture model

Let us consider an image segmented into piecewise
constant regions S; (identical attributes inside Sj).
Let us assume that every textured region C}, consists
of a set of primitives equal to the subset of region Sj,
sub{S;} (see Figure 1 top).

Each textured region C} can be characterized by a
set of attributes f(z;) present in sub{S;}, e.g., three
gray values f; = vl, fo = v2 and fs = v3 of the region
Cy shown in Figure 1 (top). This set of attributes for a
textured region C} is denoted by a texture dictionary
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Figure 1: Textured region and its occurrence and co-
occurrence of primitives.

¥ = (vl,v2,...) containing N entries (a size of the
dictionary is Np). Two textured regions have different
dictionaries.

Each element from a texture dictionary vy charac-
terizes multiple primitives S; € C%. The number of
primitives S; € C} characterized by each dictionary
component creates a component of an occurrence vec-
tor 0. The number of neighboring primitive pairs in
C}, gives rise to a component of a co-occurrence matrix
Ay = {a;;}, e.g., a pair (51, S2) occurs in the region
Ci ai p-times. Figure 1 (bottom) shows occurrence
and co-occurrence values of region C4, where compo-
nents on the horizontal axis are labeled with the dic-
tionary values (v1,v2, .. or v1v2,...). The diagonal ele-
ments of Ak are equal to zero. A textured region con-
sists of uniformly distributed primitives therefore (1)
components of occurrence vectors and (2) off-diagonal
components of co-occurrence matrix have similar val-
ues (ideally values are identical).

A texture primitive with noise is modelled as a
d-homogeneous region and obtained by performing
6-homogeneous image segmentation. é§-homogeneous
image segmentation partitions the image into a set of
regions S; with 6 homogeneity, where j is the index
of a region. The homogeneity é of one region SJ‘»S 2 is

25; - denotes a region S; with § homogeneity. § can take all

possible values from 0 up to the maximum attribute value.
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Figure 2: Homogeneity é and contrast « definitions.

defined as the maximum distance between all pairs of
attributes (e.g., gray values) at the sample points from
the region S7; || f(x: € S§) — f(xr € S7) [|< 6 (see
Figure 2). The contrast « of two neighboring regions
S? and S% is defined as the minimum distance be-
tween all pairs of attributes at one sample point from
each of the two regions; & = a1 = min{ || f(z; €
S8 — f(zr € S8) || } (see Figure 2).

The noisy primitive is described by the mean of its
interior attributes (first-order statistics). A textured
region C} with noise is characterized by a set of at-
tribute means (texture dictionary @), which is the set
of the means of the noisy primitives. A distribution
of primitives can be observed from the co-occurrences
of noisy primitives (second-order statistics) character-
ized by texture dictionary.

2.3 Observable textures

Observable (realistic) textures possess properties
either directly captured by the texture model or
achieved by several variations of the texture model3.
Variations of the following ideal characteristics are
considered (illustrations of variations are in Figure 3):
(1) Model for a primitive.

(2) Distribution of primitives within a textured region
(Figure 3; periodic - left column; random uniform -
top middle and right, bottom middle and right; ran-
dom nonuniform - middle right).

(3) Random noise inside of a primitive (Figure 3, top
right, bottom right).

Two more issues related to dictionaries in observable
textures are shown in Figure 3; a variable size of dictio-
naries (bottom row) and partially different dictionar-
ies of neighboring textured regions - dictionary over-
laps (middle left, bottom row).

The developed texture segmentation method based
on the texture model provides correct segmentation
(shown in the center of Figure 3) for all images in Fig-
ure 3. Other issues related to illumination conditions
(e.g., shadows, highlights, blur) are not addressed.

3Observable textures could be also defined as transforma-
tions of an ideal periodic texture according to Zucker [14].

Figure 3: Variations of a texture model.

3 Texture Segmentation

First, the proposed method is described. It is fol-
lowed by a discussion of (A) computational efficiency
and (B) robustness against (1) noise in primitives,
which effects dictionary detection, (2) nonuniform dis-
tribution of primitives tightly related to dictionary
overlaps.
3.1 The texture segmentation method
Assumptions: Let us consider that a given image
contains 4-homogeneous regions S]‘? (texture primi-
tives) and all neighboring pairs of regions SJ‘-S have
contrast a > 6. Let us assume that a subset subl{S]{S}
of all regions SJ,‘,-S creates an unknown connected tex-
tured region C? = subl{SJ‘?}. The textured region C?
is characterized by (1) Ny attribute means of texture
primitives (components of a dictionary #;), which are
mutually more than é apart and (2) identical values
of occurrence components 67 and co-occurrence off-
diagonal components A; due to a uniform distribu-
tion of primitives.
Derived textured region at each sample point:
Given a fixed size of dictionary N, a dictionary o,
can be built at each sample point z; by searching in a
neighborhood of #;*. The first component of the dic-
tionary is vl = f(#;). The next value of the dictionary
is any attribute, which is more than é apart from all
dictionary elements found before; e.g., v2 = f(xy) if
I fa) = far) 1> 6.

From the dictionary v, found at each sample point
z;, a 26-homogeneous textured region® Cﬁf is created

4z; became an index of the dictionary Uz, since every sample
point creates its own dictionary.
5Notation: Derived textured region Cz‘f is found at each
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Figure 4: Dictionaries 7 = (vl,v2,v3) and ¥, =

(vl’,v2,v3") for regions C? and CZ in a case of N =
N, =3.

by grouping together all neighboring sample points
z;° satisfying the inequality cyc{|| ¥y, — ¥, ||} <6,
where cyc{.} represents subtraction of any cyclical
variation of dictionary components. A co-occurrence
matrix Ay, of primitives Sf within C’ﬁf is calculated.
Analysis based on size of texture dictionary:
Three types of textured regions C’ﬁf exist with respect
to a priori unknown textured region C? depending on
a selected dictionary size N.

If the assumed size N of a dictionary is identical
to the actual dictionary size N;, N = Ny, then a pri-
ori unknown region C} is identical with all regions
C’gf found, where z; belongs to the interior of C{. In
this case, dictionaries for a calculated region C’if and
for a priori unknown region C{ satisfy the inequality
eye{]| ¥1 — Uy, ||} < 6. The dictionary components
are shown in Figure 4.

If N > N; then all Ny components of the dictio-
nary @; (corresponding to a priori unknown region
C?) are not more than é§ apart from N; out of N
components of all dictionaries ¥, s found. The Ny
components from the dictionaries ¥, ¢cs are identi-
fied by selecting dictionary components having iden-
tical values of their off-diagonal co-occurrence com-
ponents from Ay, (Figure 5). Adjacent samples z;
and z; belong to the same textured region if (1) sub-
sets of dictionary components satisfy the following in-
equality cyc{|| sub{¥y,} — sub{v;,} ||} < é and (2)
a co-occurrence component of (vlg,, vlg,) has identi-

z; (in the subscript) and by searching for samples around z;
with attributes £6 apart from dictionary components of Uy,
thus spanning 26 wide attribute range (in superscript) by each
dictionary component.

6z}, is neighboring to z; if the distance of the mutual differ-
ence is equal to one; i.e., || zx — z; ||= 1.
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Figure 5: Distribution of off-diagonal co-occurrence
matrix components.

The co-occurrence matrix Ay, is created from C’gf us-
ing a dictionary @, = (vl’,v2',v3',v4") of the size
N=4> N, =3.

cal value with all values of off-diagonal co-occurrence
components from Ay, and Ay, over these subsets (see
Figure 5).

If N < Nj then the dictionary v, as well as the co-
occurrence matrix Ay, cannot estimate global proper-
ties of a textured region.

Size of dictionary: Following from the previ-
ous analysis, the goal is to select a dictionary size N
greater or equal to the unknown true dictionary size
Ni. Any unknown size Ny of dictionary v is bounded
by the minimum and maximum values, Np,;, < Ny <
Nmaz. The minimum size of the dictionary is two,
Nmin = 2, because in order to create a textured re-
gion there must be at least two primitives with distinct
characteristic attributes. The maximum size of the
true dictionary Npqz is derived considering two neigh-
boring textured regions with non-overlapping dictio-
naries, which span the whole attribute range Ryp1q1 =
Ny * (61 + 1) + Na x (62 + az). Then the maximum
size of a dictionary is found by setting N1 = Nyip = 2
and No = Npaz; Nmae = %W. The de-
pendency of Ny,q, on 6 is plotted in Figure 6 for the
range of gray scale images R;otq1 = 256, 67 = 62 and
a1 =ag =8 +1; Npae = 23&?1 —2. The size of a dic-
tionary is selected to be N = Nyar if Njaz > Nmin
else N = Npin. Values of N can be only integer num-
bers in order to create dictionaries with discrete com-
ponents.

Steps in the proposed texture segmentation
method:

(1) For a fixed 6, estimate the maximum size of the
true dictionary N, qz.

(2) Find a dictionary @y, of the size N = Npyqp at
each sample point z; consisting of attributes from a
neighborhood of z;, which are more than é apart.

(2) Create textured regions C’gf at each sample point
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Figure 6: Maximum size of dictionary as a function of
homogeneity 6.

z; consisting of connected samples having attributes
not more than ¢ apart from at least one component of
the dictionary ¥y,.

(3) Calculate co-occurrences Ay, of primitives Sf de-
scribed by ¥, within a textured region C’if.

(4) Compare dictionaries @y, , ¥y, and check uniformity
of off-diagonal co-occurrence components Ay, , Ay, for
all adjacent samples x;, x;.

(5) Assign sample points &;, 2; into final textured re-
gions based on (4).

3.2 Computational efficiency

Computational efficiency is achieved by (1) lower-

ing the dimensionality of computations to obtain dic-
tionaries ¥, together with derived regions C2! and (2)
replacing co-occurrence matrices with co-occurrence
vectors corresponding to regions Cﬁf.
Calculation of ¥, and CZ’: Any one-dimensional
cross section of the two-dimensional textured region
C? can be used to estimate an unknown dictionary
U1 by Uip e, despite ¥, such that the inequality
cyef|| Vipz, — U1 ||} < 6 is always satisfied for
N = N; and Sf with 6 < «. If the size of selected
dictionary N is greater than an unknown size of tex-
ture dictionary N; then the inequality is always true
in a form cye{|| sub{tipq,} — 1 ||} <6 Two dic-
tionaries are used at each sample x; to estimate an
unknown dictionary ¢; from two mutually perpendicu-
lar one-dimensional cross sections (rows and columns)
starting from z;.

If the primitives S]‘»S with 6 < « are uniformly

distributed over a constituting textured region C?
then any one-dimensional cross section (denoted as
C’ngf) of the two-dimensional textured region C’gf
will contain proportional numbers of occurrences and
co-occurrences of primitives S]‘»S. Two one-dimensional

regions C’lfof are created at each sample z; to esti-
mate co-occurrences along two mutually perpendicu-
lar directions. By lowering the dimensionality of cal-
culations we decrease computational requirements.
Calculation of co-occurrence matrices Ay: In
order to merge two adjacent samples there is no
need to calculate the whole co-occurrence matrix
Ay,. It is sufficient to calculate at each sample z;
a co-occurrence vector dp,, which contains all co-
occurrences of vl = f(z;) with remaining components
of ¥y, dp, = (vlv2,v1v3,vlvd,...). Co-occurrence
vectors d, contain the information about a distribu-
tion of the off-diagonal co-occurrence components and
about a co-occurrence of two adjacent samples consid-
ered for a merger.

3.3 Noise robustness of dictionary detec-
tion

We assumed that the primitives S]{S had larger con-
trast a than homogeneity 6. In this case texture dic-
tionaries are found correctly such that all dictionaries
contain significant discriminable attributes of textured
regions. There is no error in detection of textured re-
gions due to incorrect components of dictionaries and
calculated co-occurrences.

If § > o for a primitive S? due to a random zero-
mean noise then there will be a finite error proba-
bility of an incorrect dictionary detection. In order
to increase noise robustness of the dictionary detec-
tion, components of each dictionary v, are updated
after finding C’ﬁf. The new dictionary components are
means of attributes from repetitively occurring prim-
itives S]‘? € Cﬁf described by the old dictionary com-
ponents. If 6 > « then the error probability for the
first dictionary component vl;, can be expressed as
Pr(]| leleSjCCf — vl ||< 3) = ¢, where vl is the
first dictionary component of #; having a correct at-
tribute mean based on primitives S]‘»S in C? and € is a
confidence coefficient. The larger number of samples
used for making the estimate ¥, the more noise robust
is the dictionary detection. As a consequence, there
is always a tradeoff between efficiency and noise ro-
bustness since lowering dimensionality of calculations
decreases the number of used samples for making an
estimate ¥1p o, as opposed to ¥g,.

3.4 Nonuniform distribution and dictio-
nary overlap
Properties of observable textures demonstrate a
certain degree of deviation from the ideal uniform dis-
tribution of primitives. One would like to incorporate
into the method robustness against nonuniform distri-
bution of primitives (denoted as RN) and maximize

RN.



Maximal RN means that a minimal number of com-
ponents from cyclically matched dictionaries ¥, and
Uy, is sufficient to merge samples z; and z; (assuming
that corresponding co-occurrence components have
identical value). This means that a small dictionary
overlap will lead to erroneous merger since overlapped
components of dictionaries will have identical corre-
sponding co-occurrence components. Thus the robust-
ness against dictionary overlaps RO is minimal. We
can conclude that the following equation governs the
two parameters RN and RO; RO + RN = constant.

4 Hierarchical Texture Segmentation

Texture segmentations for different values of a ho-

mogeneity parameter § (scale parameter) create a mul-
tiscale space of segmentations. Increasing é from small
values to large values will increase probability of ob-
taining accurate primitives but decrease the discrim-
ination power of the texture detection due to an in-
creased probability of dictionary overlaps. Hierarchi-
cal segmentations are created by imposing a causal-
ity rule in a multiscale space. Hierarchy in multiscale
space (causality rule) is formulated as follows: Every
region C’,‘g obtained at scale & cannot split at &6 + A6
into smaller subregions (bottom-up approach) and can-
not merge at 6 — Aé with other regions (top-down ap-
proach).
The hierarchy in multiscale space provides better noise
robustness for larger values of § (larger § means larger
confidence interval thus smaller error probability).
The hierarchy is guaranteed by modifying attribute
values within created regions C} at each scale é to
the mean values of created regions based on their
M Syt fa € SEc CY),
where M; 3, is the number of samples in all primitives
S]‘»S C C’,‘g described by one dictionary component. 1

dictionaries g(z;,8) =

5 Performance Evaluation

Performance of the proposed texture segmentation
method is judged based on (1) robustness (noise,
nonuniform distribution of primitives, dictionary over-
lap), (2) computational requirements and (3) results
from real textures (Brodatz textures, real scenes).

5.1 Robustness

Due to the relationship between robustness against
dictionary overlaps and nonuniformity of primitives,
two cases of robustness were separately tested: (1)
noise robustness of dictionary detection and (2) ro-
bustness against nonuniform distribution and dictio-
nary overlap. Experiments were conducted with syn-
thetic images having all deviations from the texture
model except the basic model for a primitive.

Figure 7: Segmentation of noisy primitives.
Left - original, middle - noisy original with primitives
having 6 > a = 0, right - obtained segmentation for
N = 5. Two textured regions C7,Cy with dictionar-
ies {0,100, 150,200,250} and {50, 150,250} (N, = 5,
N3 = 3 and overlap= 2) corrupted by noise such that
6 =50 and a = 1.

Noise robustness of dictionary detection: At-
tributes f(z;) are corrupted by an additive noise
n(z;) with a known symmetric probability distribu-
tion function D, (zero mean, standard deviation o),
p(z;) = f(z;) + n(x;). By introducing a uniformly
distributed noise we could control two crucial param-
eters 6 and a of primitives SJ‘»S as their mutual rela-
tionship 6 = 0 < a = 50 continuously changed to
6 = 50 > a = 0. There is no error in dictionary
detection for § < «. It was experimentally verified
that there is only a small error for § > o = 0 (see
Figure 7 in a presence of dictionary overlaps) by ob-
serving the number of misclassified sample points (less
than 2.5%).
Robustness against nonuniform distribution
and dictionary overlap: Several experiments were
conducted to test robustness against (1) noise in prim-
itives, (2) dictionary overlap RO and (3) nonuniform
distribution of primitives RN present in an image at
once (shown in Figure 8). Relationship between (2)
and (3) (RO + RN = const) required to choose an op-
timal solution (equal weights on RO and RN). To cope
with dictionary overlaps (primitives from neighbor-
ing textured regions described by identical attribute
means) along the border of two textured regions, one
has to merge samples rather than primitives obtained
from é-homogeneous segmentation (see Figure 7 and
8).
5.2 Computational requirements
Computational requirements are proportional to
the number of given sample points, the size of dic-
tionary N and the number of sample points in C’gf
used for calculating co-occurrences. Computational
time and memory are approximately linearly increas-
ing with increasing size of dictionaries N. In average,
one segmentation of a 2D gray scale image (1002100
samples) takes between 3 —4s for N = 3 and 6 — 7s



Figure 8: Segmentation of textures with nonuniform
distribution of primitives.

Left - original: two textured regions Cq, Cs with dic-
tionaries {0, 150,250} and {50, 120,250} (N; = Ny =
3 and overlap= 1), distribution of primitives with
probabilities %, %,% in C7 and %, %,% in Cy; mid-
dle - noisy original image with primitives having ho-
mogeneity & = 30; right - obtained segmentation for
N =3 from the noisy image.

for N = 5 on Sparc 20 workstations.

5.3 Experimental results

Due to the high computational requirements for the
size of dictionary N = N4 at small scales 6 and
some empirical observations, we ran the following seg-
mentations with a fixed size N < N4 of a dictionary
over arange of scales 6. The final segmentation was se-
lected manually from the hierarchy of segmentations.
Brodatz textures Experiments with textures from
Brodatz album [4] were performed and shown in Fig-
ure 9 and 10. As long as there were perceptually dif-
ferent sets of gray scale values (attributes) the seg-
mentation was performed correctly.
Real scene textures: The proposed texture segmen-
tation method was applied to gray scale images of real
scenes as a preprocessing step for an object recogni-
tion. Figure 11 contains a bear with fur and a checker-
board pattern vest segmented into three main regions
(head, nose and vest), which turns out to be consistent
with our perceptual expectation. A tree and grass in
Figure 12 were expected to create two dominant tex-
tured regions (tree and its background holes, light and
dark grass with ground). Grass shows approximately
uniform distribution of its stems (varying in attributes
due to lighting conditions) but the tree and its holes
do not. Segmentation of the grass is successful but
segmentation of a tree is only partially successful.

6 Summary and Conclusions

We have presented a new hierarchical texture seg-
mentation method. The following characteristics of
the work were shown:
(1) satisfactory segmentation performance of the
statistical-structural approach to texture modeling
(compare with [14]),

Figure 9: Brodatz texture I.
Top - original: Bark of tree (D12) and crushed rose
quartz (D98); middle - segmentation using N = 5 at
§ = 17; right - reconstructed image g(z;,6 = 17).

Figure 10: Brodatz texture II.
Left - original: Bark of tree (D12), wood grain (D68),
pressed cork (D32) and water (D38); middle - segmen-
tation using N = 3 at § = 20; right - reconstructed
image g(z;, 6 = 20).

(2) direct use of co-occurrence probabilities derived
from data driven, global, spatially irregular regions,
(compare with other methods using co-occurrences in-
troduced in [7]),

(3) tradeoff between computational requirements (pro-
portional to dimensionality of computations) and
noise robustness of the proposed method and

(4) unsupervised hierarchical segmentation providing
results indexed by the scale parameter 6.

Results showing robustness against (1) noise in prim-
itives and (2) nonuniform distribution of primitives
were reported for synthetic data. Computational ef-
ficiency of the segmentation method was measured.
Experiments with data from Brodatz album [4] and
real scenes were conducted.
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