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Abstract 
We present a novel application of wireless sensor networks to calibrate depth maps 
obtained through stereopsis. The motivation of our work is to increase the accuracy of 3D 
information obtained from (a) wireless sensor networks using localization, and (b) 
camera pairs using stereopsis. The goal of this report is not only to overview the current 
wireless sensor localization and stereopsis techniques, but also to summarize the 
challenges we have faced in terms of automation and accuracy of depth estimation by 
fusing stereo depth maps and wireless sensor locations. In our work, we use Crossbow, 
Inc., wireless “smart” sensors and a Canon digital camera to obtain experimental data. 
We perform a variety of experiments to assess accuracy of depth estimations using 
localization and steropsis. Finally, we include our quantitative and qualitative results 
obtained by fusing stereo and wireless sensor locations.  
 

1. Introduction 

The problem of 3-D information recovery has been addressed in the past by many 
researchers in the computer vision, machine vision and signal/image processing 
communities [1], [2], [3], and in the wireless communication community [21], [24], [26], 
[27]. The motivation for obtaining 3-D information often comes from applications that 
require object identification, recognition and modeling. There is an abundance of 
research and industrial use of 3-D information for (1) designing autonomous vehicle 
movement (collision avoidance and path planning), (2) performing teleoperation of 
vehicles (industrial robots, space rowers, aircrafts, and cars), (3) determining medical 
diagnosis with non-invasive methods (MRI, CT, X-Ray, ultrasound), (4) modeling urban 
sites for military or communication purposes, and (5) developing augmented reality for 
training and telepresence.  
 
The problem of 3-D information recovery is difficult regardless of whether it addresses 
static or dynamic object location estimation. In the past, the problem of depth recovery 
was approached, for example, (a) by vision techniques referred to as shape from cues [4] 
where cues can include stereo, motion, shading, etc…, and (b) by communication 
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techniques frequently referred to as location sensing (radio or ultrasound time-of-flight 
lateration or signal strength analysis [5]). Although the vision and location sensing 
techniques have been proposed, very few methods are robust and accurate enough to be 
used in real-time applications. It is well known that many of the depth estimation 
algorithms are computationally expensive with limited robustness and accuracy in most 
unconstrained real-life applications. The need for improved robustness and accuracy of 
depth estimation motivated our work on stereo and wireless sensor location fusion. 
 
The first component of our fusion system is a pair of visible spectrum cameras.  Contrary 
to wireless sensor networks (WSNs), cameras are viewed as traditional sensors and have 
proven to be reliable, relatively inexpensive, and suitable for collecting a dense set of 
measurements (a raster image) from their environment.  Many techniques have been 
developed in the past two decades that can extract shape information from images and 
video [1]. For example, Pankati and Jain in [4] cover extracting shape from multiple cues. 
Many applications of computational stereopsis exist including object recognition, room 
geometry determination for robot path planning, extraction of land elevation from aerial 
photographs, and investigations into the human visual system brain [3]. In our work, we 
will focus on stereopsis using two images to derive a depth map. A short overview of 
stereopsis techniques is provided in Section 2. 
 
The second component of our fusion system is a set of wireless sensors forming a 
network. WSNs are quickly becoming a major area of research.  Based on the popular 
press [6], WSNs are considered to be a disruptive technology capable of enabling 
pervasive computing on scales and in places that have been previously off-limits.  
Although the state-of-the art sensors have a way to go before becoming like “smart dust”, 
wireless sensor prototypes are sufficiently inexpensive and powerful to become of 
interest to many researchers from multiple application domains.  Novel wireless sensors 
are often built using Micro-Electro-Mechanical Systems (MEMS). They are often 
denoted as “smart” because of their computing, storage, and communication components.  
Sensor networks add the possibility of collecting many measurements including light 
luminance, temperature, sound, acceleration, magnetic field, “weather variables,” etc…  
In our work, we use the sensor capability to record sound with a microphone and 
broadcast sound with a speaker.  We use the time-of-flight approach to perform sensor 
localization.  A short overview of sensor localization is provided in Section 3. 
 
This report tackles the novel problem of data fusion between traditional sensors, 
specifically visible spectrum cameras, and WSNs.  Solving the problem of combining 
sensor locations with a depth map derived using stereopsis allows us to do, (1) depth map 
calibration, or (2) sensor location calibration.  Here, we address the former by first fitting 
a known 3-D surface to a set of known sensor locations. We then compute the calibration 
model parameters (scale and offset) through minimizing the squared error between the 
calibrated surface and known-good measurements.  A flowchart depicting the entire 
process from raw data to a calibrated depth map is shown in Figure 1.  This report 
summarizes our preliminary results obtained with synthetic and measured data along with 
details of a sample implementation using the Crossbow MICA2 motes [7], TinyOS [8], 
and Image to Knowledge (I2K) [9] . 
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Figure 1: Flowchart of Sensor Fusion 
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In section 2, the problem of computational stereopsis (stereo) is posed.  Section 3 
addresses the problem of sensor localization, namely how a network of sensors can 
“figure out where it is.”  Section 4 presents the data fusion problem. It focuses 
specifically on the problem of how one can reconcile a [scaled] depth map (from section 
2) and sensor localization information (from section 3) into a unified view of the subject 
relative to a reference.  Conclusions follow in section 5, followed by references in section 
6. 

2. Computational Stereopsis 

2.1 Problem Statement 

Stereopsis is the construction of three-dimensional geometry given multiple views of a 
scene as in [10], [11], [12].  Computational stereopsis is the science of using computers to 
perform stereopsis. Figure 2 shows a generalized stereopsis configuration.  The cone on 
the checkerboard pattern represents a scene.  Points C1, C2, and C3 represent optical 
centers of three [pinhole] cameras.  I1, I2, and I3 represent the image planes of these 
cameras: the inputs to a stereopsis algorithm.  In the general case, the stereopsis problem 
can be posed as the reconstruction of the scene geometry given the two-dimensional data 
(images) I1, I2, I3, …, In. 

 
Figure 2: Generalized Stereopsis Configuration from [10]. 

2.2 Stereopsis with Two Images 

A simplification of the general stereopsis configuration is the case with two images at a 
time (i.e. the number of input images n defined in section 2.1 is 2).  As it is readily 
apparent from Figure 2, the 3-D reconstruction of a scene point is straight forward given 
matching points on the images. The scene point can be calculated as the intersection of 
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the two lines passing through the matched points and the optical centers.  With known 
camera parameters, this setup reduces computational stereopsis to a problem of image 
matching.  Some stereo image matching techniques are described in more detail in 
section 2.4. 
 
A natural question to ask is: “What can be determined if camera parameters are 
unknown?”  The reference to camera parameters includes both intrinsic (e.g., lens 
distortions) and extrinsic (e.g., camera position) parameters. The intrinsic parameters are 
usually estimated from specification sheets provided by camera manufactures while the 
extrinsic parameters are controlled during the image acquisition, for example, by using 
stereo-rigs [11].  In this report, we do not consider the case of unknown intrinsic 
parameters and we deal with the case of unknown extrinsic parameters only. Unknown 
extrinsic parameters naturally occur when using images taken from unknown scene 
positions.  Not having to rely on “stereo rigs” or precisely placed cameras is important in 
the “real world” as existing cameras are not likely to be of this type or need to be mobile 
(e.g. security cameras).  It is well known that without extrinsic parameters, stereopsis can 
still extract 3-D geometry, albeit not to scale [12]. 

2.3 Stereo Rectification 

In this section, we focus on the special case of stereopsis without knowledge of extrinsic 
camera parameters. In this case, it is useful to perform “stereo rectification” on the 
images prior to attempting image matching.  Stereo rectification is a process which aligns 
one of the images (taken to be the right image of a stereo pair in this report) such that 
matching points in the resulting images are on the same “scanline” (row or y-coordinate).  
The resulting images form a “rectified stereo pair” that corresponds to a configuration 
with cameras displaced purely horizontally from each other (see Figure 3). 
 

 
Figure 3: Stereo Rectification 

 
Stereo rectification serves two main purposes.  First, it simplifies the geometry of the 
stereopsis problem tremendously.  In the rectified images, everything can be expressed in 
terms of “disparity,” namely the distance between pixels in one image and the matching 
pixels in the other image (Figure 4).  In general, each image point may have a unique 
disparity associated with it which is inversely proportional to the depth of that image 
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point in the scene.  The second, and perhaps more important, purpose of stereo 
rectification is that the image matching task is simplified by using rectified images.  If the 
rectification is successful, then the correct match for any pixel in an image would be 
found along the same scanline in the other image, and hence reduce a two-dimensional 
search per pixel to a one-dimensional search.  This would only be useful if the 
rectification procedure is computationally faster than the difference between image 
matching using a two dimensional search and image matching using one dimensional 
search.  We believe this to be the case. 
 

 
Figure 4: Definition of Disparity 

We decided to follow the approach proposed by Hartley in [13] and implement the 
algorithm as one of the Image To Knowledge (I2K) software tools [9].  Hartley’s 
technique allows us to find a “matched pair” of rectifying homographies (perspective 
projections), such that the epipole of the right image is mapped to infinity and epipolar 
lines in both images are equal.  Isgro and Trucco describe an implementation of Hartley’s 
approach in [14].  Instead of finding and mapping the epipole manually (as Hartley 
suggests), Isgro and Trucco recognize that the fundamental matrix from a rectified pair of 
images is: 
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They then propose using pairs of matched image points to numerically compute the 
homographies using the Levenberg-Marquardt [15], [16] and standard linear least-squares 
algorithms.  The former is used to minimize the following cost function:  
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Minimizing this equation ensures that the rectified x-coordinates of the images are not 
displaced “too much” (i.e. that the image will not be ripped apart by the first constraint).  
Any pair of homographies satisfying these equations is sufficient, but we choose a pair of 
homographies so that H2 is constrained to be a rigid transformation about a point in 
space. 
 
To rectify an image pair, we just reproject the second (“right”) image using: 
 

22
1

12 pHHp −=′  
 
We have implemented this approach in the Image to Knowledge StereoRectify tool 
accessible through the Stereo Tool from the main menu (see the documentation on Stereo 
in [9]).  Matching image points are currently specified by hand, as automatic image 
point/feature matching is another area of research beyond the scope of this report. 
 

 
Figure 5: Stereo Rectification Example 

 
Figure 5 demonstrates the functionality of the stereo rectification tool implemented in 
I2K.  The top set of images is an unrectified image pair.  The second set of images has 
the rectified “right” image.  The colored lines have been overlaid on the same scanlines in 
both sets of images.  As an example, one can look at the magenta (top) line across the 
images.  This line has been selected to intersect the sprinkler head in the left image of 
both pairs.  By comparing the distances between the sprinkler head and the magenta line 



Depth Estimation By Fusing Stereo and Wireless Sensor Locations 
 

Scherba and Bajcsy | Automated Learning Group, NCSA 8 

in the right images, one can obtain better understanding of what the stereo rectification 
algorithm accomplishes. 
 
A practical problem in the stereo rectification algorithm implementation is its sensitivity 
to the trivial solution of zero.  The Levenberg-Marquardt numerical technique that is used 
is akin to a sophisticated gradient descent.  A local minimum is desired, but the global 
minimum of zero is easily reached and has strong influence in practice.  The rectified 
image displayed above, although improved in some ways, exhibits some behavior which 
can be attributed to this problem.  Visibly, the column on the left side of the image is 
skewed in the rectified image more than one would expect for a simple, horizontal 
camera translation (the model that the rectified image pair should mirror).  This, in turn, 
can mislead the image matching techniques discussed in section 2.4.  Robust, automatic 
stereo rectification, although it would be useful, still appears to be a hard problem worthy 
of additional research.  For the short-term, we decided on using image pairs which have 
already been rectified in order to mitigate the effects of stereo rectification problems. 

2.4 Traditional Approaches to Stereo Matching 

There are two predominant approaches to the stereo matching problem: correlation, and 
graph cuts.  In both cases, the main obstacles to successful stereo matching are scene 
occlusions and mismatches. 
 
Correlation matching is simple in theory and can be described as follows. For each pixel 
in the left image, find a matching pixel along the same scanline in the right image by 
comparing two windows centered on the selected pixels using a correlation metric [17] . 
This scheme can be modified by (a) using adaptive windows, further limiting the search 
space along the scanline, or (b) doing the search in a multiscale fashion [18]. These 
modifications generally aim to increase the speed or robustness of the match.  See section 
2.5 for details on the modifications implemented to the correlation algorithm used in I2K.  
The main disadvantage of correlation matching is that every pixel fends for itself.  This 
generally leads to good matches along each scanline, but can lead to inter-scanline 
discrepancies and errors (e.g. jagged edges of objects). 
 
Graph cut matching is similar to correlation matching in that a similar distance metric is 
used to decide what a good match is.  Unlike correlation matching, graph cut techniques 
look to minimize global “costs” and can therefore penalize inter-scanline discrepancies.  
Briefly, graph cut methods formulate the stereo matching problem as a graph theoretic 
maximum flow problem.  Solving the flow problem (using a known algorithm such as 
Edmunds-Karp [19]) also gives a depth map solution that minimizes a global cost given a 
penalty weight.  The advantage to graph cut techniques is that they have produced one of 
the best computational stereopsis results to date [20].  The disadvantage of graph cut 
algorithms is their computational complexity: they are time-consuming relative to 
correlation (e.g. an execution can take many minutes for a single stereo pair). 
 
The problem of occlusions arises from regions of the stereo pair that are absent from 
either image.  The algorithm for stereo matching cannot a priori determine occluding 
regions, so matching errors are highly likely in these regions.  There has been 
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considerable research towards identifying and handling occluding regions [17], but these 
discussions are beyond the scope of this report.  A simple strategy to detecting any 
occluding regions is to run stereo matching twice, the first time searching for matches to 
the left image and the second time searching for matches to the right image.  If the two 
runs agree on disparities, the result is kept.  If the two runs disagree on disparities, the 
result is thrown out and considered to be in an occluding region. 
 
Stereo mismatches can also occur when the image matching is not a one-to-one problem.  
This is very likely to happen if the scene does not contain any visually salient features (it 
could be called a visually “boring” scene), namely scenes which have wide areas with 
absolutely no details to match against (e.g. a white wall with even lighting), or scenes 
with man-made objects exhibiting regular patterns (e.g. textured areas, or similar features 
like the windows on a skyscraper in Figure 6).  In all of the preceding cases, a small 
distance between [image matching] windows can mistakenly be classified as an incorrect 
match.  A large number of incorrect matches will generally produce useless output.  
Using techniques discussed above to reduce the search space can help eliminate the 
effects of “boring” scenes.  Similarly, global techniques, such as stereo using graph cuts, 
will avoid these problems. Global techniques would converge on a global minimum to 
promote the correct matches if given enough context.  Other than these techniques, there 
is little that can be done algorithmically.  One technique that does work in practice is to 
introduce texture into a scene (e.g. with large amounts of newspaper, or similar non-
regular textures).  We have used this method in some of our experiments with favorable 
results. 
 

 
Figure 6: A hard-to-match object due to repetitive similar features (windows). 

2.5 Stereo Matching in I2K 

In Image to Knowledge [9], we implemented a multi-scale, correlation-based stereo 
image matching technique.  It is implemented in the Stereo class and is accessible 
through the Stereo Tool interface.  The correlation technique we use was proposed by 
Hirschmuller in [18] and differs from straight-forward correlation in its use of an 
adaptive window shown in Figure 7.  The adaptive window is really composed of five 
windows.  The “main” window is the red window in the center of the figure.  It is 
surrounded by four offset “secondary” windows.  The final correlation is computed by 
summing the correlation value from the “main” window with the correlation values from 
the two best “secondary” windows.  This approach is used with the left-right consistency 
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check described in section 2.4 to identify occluded regions.  All together, this algorithm 
corresponds with steps 1 through 4 of Hirschmuller’s algorithm in [18].  As shown in 
[18] and [20], this algorithm performs fairly well when compared with other stereo 
algorithms, especially those based on correlation, on reference stereo pairs. This 
algorithm is also termed as “real-time” in [18] and [20], although it is not in our 
implementation. The graph-cut algorithms, while producing higher quality results, are 
much harder to implement and have long running times.  We did not use them in this 
report because of these reasons. 

 
Figure 7: Adaptive Correlation Window 

 
Results from our stereo image matching follow in Figure 8 - 11.  The first two images in 
each figure are the stereo pair input to the algorithm (some of which are rectified, some 
of which are not).  The third image shown in each Figure is a depth map, the inverse of 
the disparity map, either in grayscale, or pseudo-color (if hard to see otherwise).  Note 
that black (grayscale) or dark blue (pseudo-color) represents those pixels which are of 
unknown depth (i.e. those that failed the left-right consistency check).  The fourth image, 
if present, represents the “ground truth” data.  We will come back to depth map 
calibration and the validity of the results in section 4 of this report. 
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Figure 8: Synthetic Images. Top Left and Top Middle – The input [rectified] stereo pair 

generated with POV-Ray, Top Right – Computed depth map, Bottom Middle – Ground truth 
depth map generated with POV-Ray (white – far from viewer, dark – close to viewer)  

 

     
 

 
Figure 9: Measured Stereo Images (“Sawtooth”) from [20] . Top Left and Top Middle – The 

input [rectified] stereo pair, Top Right – Computed depth map (white – far from viewer, dark – 
close to viewer), Bottom Middle – Ground truth depth map obtained from [20] (white – close to 

viewer, dark – far from viewer) 
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Figure 10: Measured Laboratory Images (Room without Added Texture). Left and Middle – The 

input [rectified] stereo images, Right – Computed depth map (black – invalid, cool – close to 
viewer, warm - far from viewer) 

 

     
Figure 11: Measured Laboratory Images (Room with Added Texture). Left and Middle – The 
input [rectified] stereo images, Right – Computed depth map (black – invalid, cool – close to 

viewer, warm - far from viewer) 

3. Sensor Network Localization 

Unlike camera sensors, WSNs have yet to see much mainstream use.  Historically, this 
seems due to (1) a lack of system standardization and (2) the difficulties of designing and 
deploying reliable distributed systems.  Advances in both of these areas by open source 
development of software tools and operating systems, epitomized by TinyOS [8], allow 
for some unique sensing capabilities.  Collecting temporal [vector] data from a set of 
scattered mote-mountable sensors in a WSN is now a solved problem.  Thus, we focus on 
sensor network localization.  
 
Sensor network localization is a technique central to sensor data fusion as it allows us to 
introduce sensor location into the picture.  Section 3.1 describes the problem of sensor 
network localization.  Major approaches to sensor network localization are considered in 
section 3.2.  Ranging techniques, a common way to perform distance measurements 
inside a sensor network, are discussed in section 3.3.  An algorithmic approach to 
localization using ranging data is discussed in section 3.4.  Section 3.5 details our 
localization implementation. 
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3.1 Problem Statement 

Sensor network localization is the problem of finding out the locations of all sensors in 
the network.  Depending on the application, the localization problem can take many 
forms.  For instance, in MIT’s Cricket application [21] localization is used to identify the 
room (or part of a room) that some sensor is in.  This can be used for (a) service 
discovery, (b) enabling functionality (e.g. environmental control), or (c) providing 
functionality based on the high-level location of the device. 
 
For the applications we consider in this report, we are interested in knowing the 
coordinates of the sensors in space relative to a coordinate system defined by the position 
of one of our stereo cameras. In our implementation, the global coordinate system is 
centered on the left stereo camera. 

3.2 Approaches to Sensor Network Localization 

There are two major approaches to sensor network localization.  The first approach relies 
on existing localization infrastructure, such as GPS.  In this scenario, each mote in the 
network carries a GPS receiver [22].  The mote’s GPS receiver receives satellite 
broadcasts in order to find its global coordinates (i.e. latitude and longitude).  The motes 
then convert these global coordinates into local coordinates relative to a chosen 
coordinate system.  The major advantage of this localization system is that it is based on 
very solid technology.  Current consumer GPS receivers [23] can provide an accurate 
measurement to within 5m using differential GPS techniques.  The cons of this approach 
are cost, power consumption, fine-grained accuracy and areas not covered by GPS.  The 
cost primary derives from the GPS receiver and antenna.  These costs will presumably 
drop over time, but not relative to the cost of MEMS sensors.  The power consumption 
comes from the radio (and currently an additional processor) that is needed to receive the 
GPS signal.  Since a GPS receiver needs to be active (powered) for a bit while locating 
and tracking satellites, this is not a battery-friendly operation.  There are many areas that 
do not receive a GPS signal, notably almost any indoor location.  Finally, 5m accuracy 
may be fine on a global-level, but is not very useful on a laboratory-scale.  Other 
localization techniques that rely on infrastructure exist (e.g. triangulation from cell phone 
towers, beacons similar to those used in MIT’s Cricket, etc…) and have similar tradeoffs. 
 
The second approach to sensor network localization does not rely on external 
infrastructure.  Instead, motes in the network attempt to locate themselves relative to 
neighboring motes.  This “relative localization” can be done in a number of ways.  One 
straight-forward way is ranging, namely using a technique to find the Euclidean distance 
between two motes. In this report, we focus on the relative localization approach. 

3.3 Ranging 

3.3.1 Ranging Techniques 

There are a number of ways to perform ranging as it is summarized in [5].  The most 
common [active] techniques are direct measurement, phase-based techniques, and 
techniques based on time of flight (ToF).  Direct measurements are useful in static sensor 
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deployments with few motes. Nonetheless, they become unpractical very quickly if not 
impossible due to time/location constraints.  Phase-based techniques utilize multiple 
signals with differing wavelengths and infer the distance based on phase differences 
between the received signals.  Time of flight ranging is based on measuring the time of 
signal propagation and using knowledge of propagation speed to compute the distance to 
the object. An overview of these ranging techniques in terms of accuracy and system 
implementation is provided in Table 1. 
 
The Crossbow MICA platform with the MTS300 sensor board, has limited ranging 
capability.  Specifically, the only ranging capable hardware contained is a sounder, 
microphone, and tone detection circuit.  The sounder and tone detection circuit are both 
tuned to 4 kHz which limits the practicality of all but the time of flight approach.  Some 
research groups have experimented with custom sensor boards outfitted with ultrasonic 
transducers as ultrasound is a more traditional/refined market for ranging hardware.  
Good results using ultrasound ranging have been reported in [24].  We may investigate 
this technology in the future when it enters the commercial sensor board market. 
 
Table 1: Ranging techniques 

Technology Example Implementing 
System 

Accuracy 

GPS Leadtek GPS-9543 [23]  5m 
Laser Phase-based 
Rangefiner  

Acuity AccuRange 4000 
[25]  

.1” 

Ultrasound Time-of-Flight ActiveBats [26]  3cm 
Audible Time-of-Flight Calamari [24]  No Longer Available 
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3.3.2 Ranging Based on Acoustic Time-of-Flight (ToF) 

 
Figure 12: Acoustic Time-of-Flight Ranging 

 
As mentioned in section 3.3.1, acoustic time-of-flight ranging is both an accepted and 
easily implemented ranging technique.  This section details the strategy of time-of-flight 
ranging we implemented (see Figure 12 for a diagram).  The first step is to send a 
message to a ranging endpoint node.  The endpoint node, after receiving the message, 
simultaneously broadcasts a radio ranging message with a 4 kHz chirp.  Every node in the 
network is configured to listen for the radio ranging messages and starts a timer which 
stops when the audible chirp is heard.  A broadcast message announcing the distance 
between the endpoint and receiving nodes is then sent for all who are interested. 
 
Ranging is possible in this setup due to the differential in radio transmission speed 
(governed by the speed of light, the radio stack, and system-level issues) and the speed of 
sound in the sensing environment (we use 346.65 m/s for our experiments which 
corresponds to the speed of sound in air at 25 degrees Celsius).  The granularity of the 
timer on the receiving nodes primarily dictates the uncertainty in the ranging estimates. 

3.3.3 Implementation of Ranging Based on Acoustic Time-of-Flight in 
TinyOS 

Section 3.3.2 introduces the high-level algorithm which we implemented in TinyOS.  
This section details the implementation and presents formulas to convert timer “ticks” to 
distance (in meters), and to calculate the uncertainty in the measurements. 
 
Our implementation of ranging based on acoustic time-of-flight in TinyOS is a 
modification of the code from the Calamari project [24] and is located at 
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3b. Receive Radio Ranging 
Transmission, start timer. 
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Ranging Transmission, stop 
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projects/ncsa/d2k/modules/projects/dscherba/tinyos-1.x/contrib/calamari.  The released 
Calamari code was designed for ultrasonic sensors using the MICA platform, not the 
MICA2.  We modified the code to use the piezo-electric buzzer, microphone, and tone-
detection circuit present on the MTS300 (basicsb) sensor board.  We kept the timer 
granularity at the default 1/1024s (approximately 1 millisecond). 

3.4 Algorithmic Approaches 

As mentioned in section 3.1, the goal of localization is to find coordinates of sensors in a 
given coordinate system.  This section addresses the problem of converting ranging data, 
as collected by techniques discussed in section 3.3, into localization information. 
 
This problem is not always solvable, but the pathologic cases tend not to appear in 
practice [27]. The authors of the technical report [27] frame the problem in a graph 
theoretic manner. Let each mote be a node, and let the average ranging distance between 
motes be the undirected edge lengths.  If a three dimensional embedding of the above 
graph exists and is globally rigid, we have a valid solution to the localization problem.  
The approach suggested in [27] to find such a solution has two steps: first the graph is 
“unfolded,” then an iterative, mass and spring graph relaxation technique is used.  The 
“resting lengths” of the springs are the ranging distances, so the solution will even handle 
errors in ranging by converging to a “minimum energy” configuration. 
 

3.5 Localization Results 

We followed the algorithmic approach proposed in [27]. An implementation of this 
technique was started in: tinyos-
1.x/tools/java/net/tinyos/acoustic_ranging/GraphUnfold.java, but has been abandoned for 
the time-being due to poor ranging results.     
 
See the appendix in section 7 for details on how to conduct acoustic time-of-flight 
localization using MICA2 sensor boards with TinyOS.  The ranging code returns a large 
number of results for each ordered mote pair.  Since our setup was static, the reported 
data has been averaged resulting in the “Averaged Ticks” column in the following table.  
We compute the “Absolute Error” as follows: 

( ) ( )Distance ActualDistance RangingError Absolute −=  

Equation 1: Absolute Error Computation 

When using this ranging procedure in a real room with real sensors, our ranging results 
were as follows: 
 
Table 2: WSN Ranging Results in an Office Environment 

Mote 
Pair 

Averaged 
Ticks 

Ranging 
Distance (m) 

Actual Distance 
(m) 

Absolute Error (m) 

0 to 5 179.8 60.8668652 3.03 57.83686523 
1 to 0 27 9.14018555 2.63 6.510185547 
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1 to 3 11.25 3.80841064 2.07 1.738410645 
1 to 5 7.26315789 2.45876336 0.725 1.733763363 
2 to 1 26 8.80166016 1.45 7.351660156 
2 to 4 21.3333333 7.221875 2.07 5.151875 
2 to 5 13.8974359 4.70463492 0.725 3.979634916 
2 to 6 107 36.2222168 1.27 34.9522168 
4 to 0 208 70.4132813 1.55 68.86328125 
4 to 1 7.25 2.45430908 1.48 0.974309082 
4 to 3 9 3.04672852 1.45 1.596728516 
4 to 5 14.7027027 4.97723818 1.65 3.327238176 
4 to 6 45.3333333 15.3464844 1.95 13.39648438 
5 to 0 15.75 5.3317749 3.03 2.301774902 
6 to 1 1614 546.37998 1.27 545.1099805 
6 to 3 79.5 26.9127686 1.95 24.96276855 
6 to 5 7.63157895 2.58348324 1.04 1.543483244 
   Avg Abs Error (m) 45.96062707 
 
We were not pleased with this result and conducted some further research.  We searched 
for explanations related to (1) inaccuracy of measured clock ticks and (2) range 
dependency and variation with respect to oriented mote-to-mote communication. First, 
judging by the large range in the measured clock ticks (e.g. from around 10 to over 200 
ticks) for a fairly small range of distances, it appears that there are some system-level 
behaviors that we have not accounted for.  Specifically, it appears as if TinyOS is 
regularly performing computation on its own which is unknown to us and which is not 
associated with ranging or radio communication.  This computation delays the acquisition 
of the timer count thereby increasing the number of ticks.  This hypothesis is consistent 
with some of the large jumps we see in the data and is also consistent with the “positive” 
error we always see.  This variation in ticks directly translates into variation in distance 
(by quite a lot as sound travels quickly through air) which in turn translates into ranging 
errors.  Ranging errors of this magnitude provide no meaningful localization data at the 
laboratory scale, which we are investigating. 
 
Second, we noticed the irregularities in the data with respect to oriented mote-to-mote 
communication.  As an extreme case, consider the difference between the computed 
distance from mote 0 to 5 and mote 5 to 0 (the same physical distance).  Further 
investigation revealed that the speakers and microphones that we used for this experiment 
were not very consistent.  Some speakers produced very different tones that some 
microphone and tone-detection circuitry could not detect.  Some microphones were not as 
sensitive to tones as others.  Noticeable air conditioning noise was a likely source of data 
complication in addition to hardware inconsistencies.   
 
We had the good fortune of borrowing a collection of MICA2 motes from the University 
of Illinois Computer Science department that had been modified to conduct ranging 
experiments.  Specifically, the speakers on the sensor boards had been bypassed with 
another more powerful speaker shown in Figure 13.  
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Figure 13: MICA2 Mote with powerful speaker. 

We ran a more methodical ranging experiment where we incremented the distance between two 
motes by 0.5 meter and collected data using the procedure in Section 7.  This is the obvious sub-
problem of the full ranging problem as the ranging data in a network of motes is reported between 
pairs of motes.  Our results are summarized in Table 3. 

 
Table 3: Ranging Results versus Distance in an Office Environment 

Mote 
Pair 

Ranging 
Distance 

(m) 

Actual 
Distance 

(m) 

Absolute 
Error (m) 

Ranging Distance 
(Offset) (m) 

Absolute Error (m) 

0 to 1 1.354101563 0 1.354101563 0 0
1 to 0 1.861889648 0 1.861889648 0 0
0 to 1 5.501037598 0.5 5.001037598 4.146936035 3.646936035
1 to 0 2.285046387 0.5 1.785046387 0.423156738 0.076843262
0 to 1 2.482519531 1 1.482519531 1.128417969 0.128417969
1 to 0 4.739355469 1 3.739355469 2.87746582 1.87746582
0 to 1 3.949462891 1.5 2.449462891 2.595361328 1.095361328
1 to 0 4.513671875 1.5 3.013671875 2.651782227 1.151782227
0 to 1 4.062304688 2 2.062304688 2.708203125 0.708203125
1 to 0 7.109033203 2 5.109033203 5.247143555 3.247143555
0 to 1 7.334716797 2.5 4.834716797 5.980615234 3.480615234
1 to 0 7.532189941 2.5 5.032189941 5.670300293 3.170300293
0 to 1 6.996191406 3 3.996191406 5.642089844 2.642089844
1 to 0 6.601245117 3 3.601245117 4.739355469 1.739355469
0 to 1 8.350292969 3.5 4.850292969 6.996191406 3.496191406
1 to 0 8.463134766 3.5 4.963134766 6.601245117 3.101245117
0 to 1 10.24039307 4 6.240393066 8.886291504 4.886291504
0 to 1 7.786083984 4.5 3.286083984 6.431982422 1.931982422
1 to 0 8.124609375 4.5 3.624609375 6.262719727 1.762719727
    Avg Abs Error (m) 2.007523386
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In the above results, “Distance (Offset)” is simply a translated distance computed by 
subtracting the ranging distance associated with the ground-truth distance of 0.  This 
number is potentially different for each mote, so we offset by different amounts 
depending on the receiving mote.  Note that having a ranging distance greater than 0 for a 
ground-truth distance of 0 supports our hypothesis of a systematic error in our data 
caused by system-delays at the TinyOS level.  This particular problem is apparently quite 
common as [21] and [24] both use custom boards with dedicated processing to avoid 
delays.  Here, we compute the “Absolute Error” as follows: 

( ) ( )Distance Actual(Offset) Distance RangingError Absolute −=  
Equation 2: Absolute Error Computation 

 
The above results are much better than our first ranging results.  We feel that much of the 
error reduction is due to the improved speakers as they were qualitatively much louder 
than the background noise.  Average errors of 2.0m are still not good enough for our 
applications, however.  We conclude that further research in localization needs to be 
completed before automatically collected localization data is useful for depth map 
calibration.  We assume that such a method exists and can produce accurate localization 
data for the remainder of this report. 

4. Stereo and Localization Data Fusion 

Stereo and localization data fusion brings the results of the preceding sections together in 
a consistent manner.  Specifically, it allows us to (a) calibrate a depth map given 
localization data collected from the same scene and (b) calibrate sensor locations given a 
depth map.  Section 4.1 introduces the problem of stereo and localization data fusion.  
Section 4.2 details techniques that can solve the data fusion problem, the simplest of 
which we have implemented.  Section 4.3 reflects on results of our fusion algorithm on 
varying qualities of data. 
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4.1 Problem Statement 

In this report, we formulate the stereo and localization data fusion problem as the 
problem of calibrating the depth map (obtained through computational stereopsis) using 
the localization data (obtained from the wireless sensor network).  Theoretically, the 
depth map is correct up to a scaling factor, so the problem reduces to the problem of 
calculating the scaling factor.  We look at solving the [more general] problem of a scaling 
factor and an offset.  The offset can presumably handle some systematic errors that we 
have unknowingly introduced by our techniques.  In summary, Equation 3 defines the 
depth map calibration relation. 

βα += mapdepth zz calib
mapdepth  

Equation 3: Depth Map Calibration Relation 

4.2 Proposed Approach 

The primary challenge in the data fusion problem is the registration of the depth map 
image with the wireless sensor locations.  We are looking for depth map image locations 
where a sensor lies. This could be viewed as a matching problem assuming that a sensor 
shape or its intensity profile is uniquely defined with respect to all other scene objects. 
We have considered two approaches to this registration problem.  

 
In the first approach, a user manually specifies the correspondences (as we have done 
above for the stereo rectification problem).  This consists of manually identifying pixels 
in the depth map (or the corresponding left stereo image) of a known sensor ID.  If the 
localization step is completed successfully, knowing the sensor ID is equivalent to 
knowing the depth coordinate of the sensor, calib

mapdepthzz =sensor . 
 

In the second approach, one can place sensors on visible planar surfaces in a sufficiently 
dense fashion.  By incorporating the spatial arrangement of sensors, we can automate 
parts of the calibration as described in the following procedure. The sensor locations in a 
depth map image coordinate system are manually selected, and the calibration program 
fits the sensor locations to a plane in the 3-D “world” coordinate system. This plane is 
used for depth map calibration since in the “camera” coordinate system, the image points 
corresponding to the sensors will also form a plane.  The depth map calibration is based 
on the fact that all sensor locations relative to an arbitrary point taken to be the “left” 
camera, in our setup, are known to be within scale, offset, and rotational factors (i.e. five 
degrees of freedom).   
 
In this work, we use the second approach for fusing stereo and wireless sensor locations. 
In general, one would desire to identify a large plane, both in terms of sensors falling on 
it, and in percentage of image covered.  Techniques for finding a planar subset in a 
collection of 3-D points exist in the literature, for instance in [28].  We avoided this 
problem by manually selecting points from the stereo pair that lie on a plane in a world 
coordinate system defined by the left camera. 
 



Depth Estimation By Fusing Stereo and Wireless Sensor Locations 
 

Scherba and Bajcsy | Automated Learning Group, NCSA 21 

We continue by finding the parameters of the plane in 3-D that fits the sensor ”world” 
coordinate locations using a linear least squares approach and minimizing the squared 
error in z (the axis perpendicular to the image plane).  We fit the plane 

0=+−+ dzbyax  to the sensor real-world coordinate locations.  Using the computed 
plane parameters (a, b, d) we then make the substitution for calib

mapdepthz  using Equation 3 
and solve (in a linear least squares fashion) the resulting problem over all known points 
to obtain α and β.  At this point the depth map can be calibrated and the results compared 
against what is known. 

4.3 Experimental Results 

Section 4.2 covered the implementation of the fusion algorithm used in Image to 
Knowledge.  Section 4.3.1 covers the details of our evaluation methodology for this 
algorithm.  The quantitative results from our experiments are reported in section 4.3.2. 

4.3.1 Methodology for Accuracy Evaluations 

Ultimately, we measure our fusion performance by the accuracy of the resulting depth 
map relative to a ground truth depth map.  In practice, the ground truth depth map is 
generally not available, or is very difficult to obtain.  The situation is a bit different in our 
experimental setup as we have the ability to acquire ground truth measurements.  We 
conducted experiments with theoretical/synthesized stereo pairs and actual/measured 
stereo pairs.  In the synthetic image case (e.g. Figure 8), we can generate a dense, 
theoretically correct depth map.  In the real-world cases, we do not have the luxury of a 
dense depth map and must resort to a relatively small set of points at hand-verified 
distances.  
 
Another issue is the error metric for comparing ground truth depth maps with estimated 
depth maps. We consider two error metrics: (a) the average absolute distance error for 
each pixel/hand-verified point, and (b) the average absolute distance error as a percentage 
of maximum measured range in the image.  Both values decrease with more accurate 
calibration (fusion) and are asymptotically optimal (zero). The accuracy evaluation 
methodology for each set of input images is outlined next. 

  
4.3.1.1 Methodology for Synthetic Images 

1. Create a synthetic stereo pair 
2. Compute a theoretical depth map based on the geometry of the scene1 
3. Compute an uncalibrated depth map mapdepthz  from a stereo pair of images using 

the I2K Stereo tool. 
4. Using four points from step 2 that fall in a plane, calibrate the depth map from 

step 3 using the I2K Stereo tool to obtain calib
mapdepthz  based on Equation 3 

5. Compute the average absolute distance error using all image points (perhaps 
excluding a border of a given width)2 

                                                 
1 One way to do this if using a ray tracer like POVRay is by texturing the entire scene with an “ambient” 
colormap linearly changing from black to white and centered at the camera 



Depth Estimation By Fusing Stereo and Wireless Sensor Locations 
 

Scherba and Bajcsy | Automated Learning Group, NCSA 22 

6. Compute the average absolute distance percentage of maximum measured range.   
The maximum distance of the points from step 2 is “Max Range” and we use: 

%100
Range)(Max 

Error) Dist. Abs. (Avg.  RangeMax  of %Error ⋅=  

4.3.1.2 Methodology for Real Images 
1. Take a stereo pair of a real scene 
2. Record manually distance measurements to N points (N>4) in the scene.  Four of 

these points will be used for calibration and should lie in a plane.  One point 
should represent the maximum range of the image (used in step 6) 

3. Compute an uncalibrated depth map  mapdepthz  from a stereo pair of images using 
the I2K Stereo tool. 

4. Using the four points from step 2, calibrate the depth map to obtain calib
mapdepthz  based 

on Equation 3 
5. Compute the average absolute distance error using all points from step 2: 

∑
∈

−=
Points

)()(1Error Dist. Abs. Avg.
i

actual
calib

mapdepth iziz
N

 

6. Compute the average absolute distance percentage of maximum measured range. 
The maximum distance of the points from step 2 is “Max Range” and we use: 

 %100
Range)(Max 

Error) Dist. Abs. (Avg.  RangeMax  of %Error ⋅=  

4.3.2 Results 

We performed a number of different experiments in order to evaluate quantitatively the 
accuracy of results as a function of scene texture and calibration model complexity.  
Specifically, we conducted experiments that change the amount of texture in the scene 
(which affects the quality of the stereo output).  We also include results which have been 
calibrated using only “scaled” depth maps (assuming 0=β ).  We observed that the 
calibration results under the assumption of 0=β  led to smaller error in some cases, 
seemingly due to the sensitivity of calibration to the quality of the plane fit.   
 

    
Figure 14: Synthetic Plane. Left and Middle – The input [rectified] stereo pair generated with 

POV-Ray, Top Right – Computed depth map (pseudo-color) 

                                                                                                                                                 
2 The …i2k.tools.CalibrateDepthTest class (a command-line tool packaged with I2K) can perform these 
calculations 
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As an algorithm test, we generated a synthetic stereo pair (Figure 14) consisting of a 
single plane perpendicular to the camera (e.g. a normal pointing along the z-axis).  We 
fitted a plane to four image points, as before, and verified that the fitted plane had a 
normal along the z-axis regardless of the specific implementation of a stereo method.  
The scale and offset factors differed, however, leading to differing errors in the calibrated 
depth map.  Our results (excluding a border of width 100 pixels) are summarized in Table 
4.  
 
Table 4: Results obtained for a synthetic stereo pair consisting of a single plane 
perpendicular to the camera. 
 Number of 

Points 
Scale 
α  

Offset 
β  

Avg. 
Absolute 

Dist. Error 

Maximum 
Image 
Range 

Error % 
of Max 
Range 

Scale 
Only 

57408 .616 N/A 0.512 12 4.26% 

Scale and 
Offset 

57408 -.702 19.925 0.054 12 0.45% 

 
During testing with real stereo pairs, the phenomenon of near-zero scaling factors 
occurred numerous times, creating very large calibration errors.  We feel this arises due 
to overfitting of our calibration points.  The errors in the chosen points allow for a local 
minimum “fit” that is just their average (i.e. purely an offset), rather than a purely scaled, 
or mixed solution that approaches the global minimum error.  Theory predicts that scaling 
is the only operation needed to achieve the global minimum, so incorporating this a priori 
knowledge into the fitting step is the “correct” thing to do.  In real and synthetic stereo 
pairs, this is not always true, possibly due to unknown systematic errors.  Fortunately, 
both “scaling” and “scaling and offsetting” result in empirically similar numbers, 
suggesting that either choice will work.  We present both figures in our calibration 
results: 
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Table 5: Calibration Evaluations 

Stereo Pair Number of 
Points 

Avg. 
Absolute 

Dist. Error 
0,0 ≠≠ βα  

Avg. 
Absolute 

Dist. Error 
(“scaled 
only” or 

0=β ) 

Maximum 
Image 
Range 

Error % of 
Max Range 
(Scale and 

Offset/Scale)

Synthetic  17808 7.664 2.731 12 63.8% 
22.76% 

Untextured 
Room 

15 1.771m 2.546m 7.7m 23% 
33.1% 

Textured 
Room  

15 1.269m 1.412m 7.7m 16.5% 
11.8% 

 
Interestingly, we find that performance with measured images is better than performance 
with synthetic images in terms of distance accuracy as a percentage of maximum image 
range, a useful measure of calibration accuracy.  We attribute this to the simplicity of our 
synthetic scene compared with the complexity of the actual room.  In the actual room, 
especially in the textured case, there are more unique “textures” that the stereo algorithm 
can match against resulting in a better depth map.  Similarly, performance is better in the 
textured room than in the untextured room for the same reason.  Another reason for the 
difference between the synthetic and measured performance is due to the density of 
ground truth points.  In the actual room, we measured only certain, “easily identifiable” 
points, while in the synthetic scene we knew 3-D locations of all image points.  
 
We do not have data on how these range estimates compare with range estimates 
obtained with calibrated cameras (i.e. when the intrinsic and extrinsic parameters of both 
cameras are known).  We leave this comparison as an area for future research.  

5. Conclusion 

We presented the results of a preliminary study about depth estimation by fusing stereo 
and wireless sensor locations. Depth map calibration is one possible application of such  
fusion.  For this application to become feasible, more research needs to be done on the 
underlying problems, especially on algorithms that do not require human intervention.  
On the infrastructural level, accurate ranging in wireless sensor networks remains a 
problem.  Some of this may be alleviated with future commercial developments (and 
related software), such as ultrasound boards.  On the algorithmic level, robust techniques 
for matching image points need to be explored.  While this is a largely solved problem in 
the computational stereopsis domain, it remains a problem for those cases where image 
coordinates corresponding to sensors must be found.  These points are critical in the 
calibration step, but have been manually specified in this report.  Once these problems 
have been solved, this application may become very useful as it does not require the use 
of precise cameras or calibrated stereo rigs.  As wireless sensor networks and pervasive 
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computing take off and become a commercial reality, this capability can be the 
underlying layer of high-level recognition and response mechanisms: one piece of a 
“smarter” world. 
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7. Appendix A: Acoustic Time-of-Flight Ranging 

This appendix describes the procedure for conducting time-of-flight ranging using the 
modified Calamari code.  A working knowledge of TinyOS and sensor hardware is 
assumed and can be gained through the material at [8]. 
 
The required hardware for acoustic time-of-flight ranging is fairly minimal:  

• Base station (with mote) 
• PC with Java to connect with base station 
• MICA2 motes (one for each node including the origin) 
•  “basicsb” sensor boards with microphones and sounders for each node 

 
Programming the motes is also straight-forward.  Note that the Active Message group 
(used in TinyOS communication) is 0xdd in the Calamari-derived code.  0x7d is the 
default group for TinyOS, so you will need to adjust the TOSBase build process to listen 
for this group.  This can be done with the following addition to TOSBase/Makefile: 
 
 DEFAULT_LOCAL_GROUP=0xdd 
 
The preceding addition should be made before any “include” lines to ensure that it will 
work.  To program the motes, do the following (path names relative to the TinyOS root 
directory in the CVS code archive, namely 
projects/ncsa/d2k/modules/projects/dscherba/tinyos-1.x): 

1. Program the base station with apps/TOSBase 
2. Program all of the nodes with: 

contrib/calamari/micaRangingApp/TransceiverApp.nc using unique numeric 
identifiers 

 
At this point, the motes can be turned on and deployed.  To start the ranging, run the 
tools.java.net.tinyos.acoustic_ranging.acoustic_ranging Java class.  This code will dump 
its output (with the raw ranging results in ticks) into a file named “moteMap.out” in the 
current directory.  This file is actually a serialized class that can be used as input to other 
analysis programs.  With time we hope to make this interface more transparent and 
suitable for input into non-specialized tools (i.e. a text or XML file). 


