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Abstract 
The purpose of this white paper is to outline computer science issues related to the Task 
entitled “Create end-to-end meta-workflow demonstration” which is one part of the 
NCSA Environmental Cyber-Infrastructure Development (ECID) effort. Our goal is to 
research and develop meta-workflow architectures to support a set of environmental 
science and hydrology demonstrations in the short term and to support a spectrum of 
application communities in the long term. From the NCSA institutional view point, this 
white paper documents our design phase and provides an overview of meta-workflow 
definitions, previous work on workflows, a set of requirements, proposed meta-workflow 
architecture, and the current features of the prototype meta-workflow implementation 
called CyberIntegrator. 
 
From the computer science view point, the paper presents the problem of designing a 
highly interactive scientific meta-workflow system that aims at building complex 
problem-solving environments from heterogeneous tools. Driven by systems-science use 
cases and complex informatics problems, we identify the dimensions along which current 
workflow technologies must grow to become a robust cyber-infrastructure capable of 
scaling to meet the national needs. Being able to join workflows developed using 
modules from the multiple open source and commercial workflow systems in use in 
various sub-disciplines is an obvious need. Less obvious but also critically important are 
abilities to describe and share workflow fragments, to execute portions of workflows on 
different appropriate hosts, or to provide security, provenance and fault-tolerance features 
of software execution. We introduce the term meta-workflow to refer to workflow 
systems designed to meet these end-to-end needs. We then discuss the architecture and 
implementation of a meta-workflow prototype called CyberIntegrator developed at 
NCSA. Our current meta-workflow architecture enables users (1) to browse registries of 
data, tools and computational resources, (2) to create meta-workflows by example or for 
batch processing, (3) to re-use and re-purpose meta-workflows, (4) to execute meta-
workflows locally or remotely, and (5) to incorporate heterogeneous tools and link them 
transparently. The contribution of our work is (a) in defining the meta-workflow concept 
focused on science requirements and (b) in architecting technology and prototyping 
CyberIntegrator software supporting environmental observatories and other applications. 
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 2

1 Introduction 
 
Today the word “informatics” has become present in a multitude of application areas. 
Informatics refers to the increasing amounts of often highly complex data that have to be 
analyzed; information has to be interactively extracted from raw data and understood. In 
all application areas, scientists desire to learn from their data about a spectrum of 
complex phenomena surrounding us, and workflows and other software applications 
(including numerical and statistical models) have become their tools to support 
informatics, interactive data analysis and visualization, automation of large-scale data 
calibration and data reduction processes in Grids, etc. The challenges in any X-
informatics system, where X stands, for instance, for bio, hydro, medical image or sensor 
[3], [4], are usually related to (a) data volume and computational requirements, (b) data, 
analysis and resource complexity management, and (c) the heterogeneity of information 
technologies supporting scientists. Our goal is to support X-informatics scientists to 
overcome these challenges by building a meta-workflow system. 
 
The motivation for introducing the term scientific “meta-workflow” is driven by the need 
for information technology that could support scientists in their endeavor to solve highly 
complex problems with sophisticated tools running in heterogeneous computer 
environments. Problem complexity could be understood as a continuous variable that can 
reach infinity [12]. In a typical data-driven scientific exploration scenario, complexity of 
a problem refers to the complexity of (a) data sources and data organizations, (b) models 
developed from the data, (c) computer tools and hierarchical workflows to perform 
analyses, (d) computational resources involved in the analyses or (e) expertise necessary 
to comprehend and link all pieces of information. It is the scientific problem complexity 
and the broad spectrum of computer environments in the current scientific use that lead 
us to think about a higher layer of abstraction than a workflow, such as a meta-workflow. 
This could be illustrated in an environmental context with the example where Kepler 
software performs basic geo-spatial data retrieval and cleaning, ArcGIS integrates data, 
and D2KToolkit reports the results of data-mining of observations [40], [41]. Kepler has 
to be executed close to the data source due to size, ArcGIS has run on a server with a 
license, and D2KToolkit needs to run on a larger computer cluster due to processing 
requirements of data- mining. 
 
The term meta-workflow has been introduced in the past in multiple contexts. First, it is 
viewed in the context of workflow aggregations or hierarchy of workflows [15] (a 
workflow is an aggregation of tasks, a meta-workflow is an aggregation of workflows or 
a hierarchy of workflows). Second, it is presented in the context of a process 
management, where large activities have to be integrated, executed and evaluated in a 
process of conducting electronic commerce [13],[14], [16]. It is apparent that the term 
meta-workflow has been used to refer to either flows of tasks or processes of activities 
that are more complex and include a set of autonomous flow/process entities. The 
formation and coordination of these complex processes led to introduction of other terms, 
such as workflow agents that would pose the properties of Atomicity, Consistency, 
Isolation, and Durability (ACIDity) [17], [18], [14]. Given these complex processes, we 
need to clearly extend the definition beyond a hierarchy of workflows by detailing 
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changes to the interface to support hierarchies versus low level modules, and to include 
the other problem dimensions. 
 
We introduce a definition based on meta-workflow dimensions, and its functionality in 
these dimensions. The meta-workflow dimensions include (1) hierarchical structure and 
organization of software, (2) heterogeneity of software tools and computational 
resources, (3) usability of tool and workflow interfaces (e.g., workflow by example), (4) 
community sharing of fragments and publications, (5) user friendly security and 
provenance, (6) built-in fault-tolerance, etc. For example, the hierarchy dimension could 
be illustrated by widely applicable low-level modules (also called actors) in contrast to 
specialized workflow fragments. Furthermore, combinatorial explosion of module 
connection means that there are many more possible fragments than modules and hence 
there is a need for new mechanisms to organize fragments. One would also expect that 
fragments are produced by a larger set of people than modules so new description, 
publication, validation, and discovery mechanisms will be needed. Higher order 
workflows also have more scientific/discipline meaning. Thus, there is the potential (a) to 
organize them into categories related to data ingestion, cleaning, aggregation, etc. and (b) 
to adjust user interfaces to build scientific processing pipelines with the meaningful 
fragments defined by a community rather than with low level modules that lead to 
completely unstructured processing graphs (e.g., by using semantics to organize modules 
[8]). The heterogeneity dimension could be demonstrated by the number of different 
engines and software applications used by people for a reason, for instance, because of 
user friendliness, complementing functionality of modules, interactive versus batch 
model execution, execution scalability, ability to disconnect from running processes, etc.  
 
Given multiple meta-workflow dimensions, meta-workflow functionality is defined by 
the fact that it has to provide (1) a mechanism for defining hierarchies of structures, (2) 
ways to integrate execution across tools and heterogeneous environments, (3) user-
friendly interfaces, (4) single sign-ons across heterogeneous engines and distributed 
systems, (5) fault-tolerance (handle error conditions) across a meta-workflow and 
eventually optimization of service selection, etc. In this context, the tools are understood 
as software applications, workflows, web services, communication mechanism with 
instruments, etc, and it is expected that the tools would likely perform very sophisticated 
tasks. Heterogeneous environments refer to multiple application executors, workflow 
engines, operating system platforms, or hardware components. We derived the name 
meta-workflow from the term workflow since it represents the notion of structured work 
procedure (www.wikipedia.org) and coordinated execution of multiple activities [10] and 
includes a number of humans, databases, and specialized applications [18]. The prefix 
‘meta’ indicates the fact that a single scientific tool or a workflow would not be sufficient 
and friendly enough to enable scientists to solve highly complex problems with 
sophisticated tools needed for the analyses and running in heterogeneous environments. 
As the definition of the word ‘meta’ suggests, our definition of a meta-workflow refers to 
a workflow of more highly organized or specialized form.   
 
While there is an abundance of meta-workflow applications, the meta-workflow design is 
viewed as a computer science problem that creates a cyber-infrastructure component 
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supporting scientists trying to solve complex X-informatics problems. In order to 
demonstrate our meta-workflow prototype, we selected environmental, hydrological and 
medical applications. The application drivers pose a series of scientific questions about 
coastal management (hypoxia, elevated zinc levels in oysters, eutrophication, i.e. 
increased levels of nutrients such as nitrogen and phosphorus), river basin and intensively 
managed landscape management (extensive modification of the land for agriculture and 
urban use), and medical structures relevant to diagnoses and discoveries (in vitro and in 
vivo 3D tissue reconstruction). The investigations of the above scientific questions call 
for providing an interactive style software environment where analyses, including access 
and utilization of data, computational tools and hardware resources, should be enabled 
transparently so that scientists can gain phenomenon understanding while addressing 
their problems at the high abstract level. In our work, we derived the requirements for 
meta-workflow design by exploring our specific application drivers and the common 
requirements found in other published work.  
 
Given the meta-workflow definition and a set of requirements, our work focuses on the 
architecture of a meta-workflow. The architecture is comprised of meta-workflow core 
and extension system components that communicate with global registries of available 
data, tools and computational resources. Due to the modular architecture, it is possible to 
substitute meta-workflow components in the future if anyone desires to do so. We present 
the modular meta-workflow architecture, where scientists can register their favorite data, 
tools or computational resources in the prototype meta-workflow registries to leverage all 
available resources using the developed meta-workflow system. With these community 
registries of heterogeneous data, tools and computational resources, we currently enable 
(1) meta-workflow creation by example (select and execute each processing step), (2) 
meta-workflow formation for batch execution (create a sequence of processing steps first 
and then execute them), (3) meta-workflow representation for re-using and re-purposing, 
(4) data structure conversions across heterogeneous tools based on syntax mapping, and 
(5) local or remote meta-workflow execution using heterogeneous executors and services  
already installed on multiple known computers. Our current prototype does not address 
semantic conversions (e.g., multiple names for the same physical variable) and operates 
under the underlying assumption of moving data to available computational resources 
rather than moving codes corresponding to tools to large data repositories. The reasoning 
behind these assumptions is explained later in the document.  
 
This paper is organized as follows. Section 2 describes related work. Section 3 presents 
the meta-workflow requirements and introduces meta-workflow as one part of NCSA 
Cyber-environments in Section 4. We outline the meta-workflow architecture called 
CyberIntegrator in Section 5 and demonstrate key capabilities of our preliminary 
prototype implementation in Section 6. 
 

2 Related Work  
 
In general, meta-workflows and workflows are similar in their multi-tier structure, and in 
their structure (both contain three basic building blocks, such as editor, representation and 
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engine). The main dissimilarities could be described as follows. Workflows are 
composed of software components (called modules or actors) that would be subsets of 
meta-workflow components (tools) in terms of their semantic meaning and software 
complexity. Workflows provide a mechanism to develop and connect modules that 
comply with specific application programming interface (API) followed by developers.  
Meta-workflows that support multiple engines provide a user friendly registry-based 
mechanism to add tools that could be executed by the engines, and then connect the tools 
by application scientists. A workflow execution is typically performed using a 
homogeneous environment that consists of a single workflow engine. A meta-workflow 
execution is performed using heterogeneous environments that consist of multiple 
executors. From a user’s perspective, meta-workflows operate at a coarser level of 
software functionality than workflows, transitions between heterogeneous environments 
are hidden, and incompatible data syntax is guided by user-friendly interfaces and 
available data converters. Currently, a user still has to address incompatible data 
semantics. In summary, meta-workflows could be discriminated from workflows by their 
semantic abstraction of tools, their flow graphs corresponding to higher conceptual levels 
of problem solutions, the scalability for investigating large ensembles and event-triggered 
runs, the simplicity of human computer interfaces and interactions, and the scale of 
community users and contributors.  
 
We could relate other aspects of workflows to the concept of meta-workflows, such as 
the aspect of the balance between job characteristics and optimal execution. For example, 
jobs could be described as compute-intensive, data-intensive, analysis-intensive, 
coordination-intensive or visualization-intensive [8]. The optimal execution would 
include mechanisms for finding geographical proximity and temporal availability of 
computational resources, data sources and domain expertise. The meta-workflow design 
does not assume any specific type of job characteristics since the types will be depend on 
each community use. The optimal execution currently relies on each already implemented 
execution of a tool. Nevertheless, the meta-workflow executor takes a list of hardware 
resources where any particular tool can be executed and tries to execute the tool in the 
order provided by the un-sorted list in the case of failure. The list can be sorted based on 
user and community preferences in the future. 
 
In the remainder of this section, we compare the concept of meta-workflows with the 
existing workflows first, then classify our meta-workflow based on four workflow 
paradigms and illustrate complexity aspects of meta-workflow. 
 

2.1 Comparison with Existing Workflows 
 
We start with definitions of a workflow since the word meta-workflow contains the word 
“workflow”. According to www.wikipedia.org, “a workflow is the operational aspect of a 
work procedure: how tasks are structured, who performs them, what their relative order 
is, how they are synchronized, how information flows to support the tasks and how tasks 
are being tracked”. According to the scientific literature [10], “Workflows are activities 
involving the coordinated execution of multiple tasks performed by different processing 
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entities”, where the processing entities can be people or computer programs. The past 
workflow environment efforts have led to several workflow prototypes that should be 
compared with the described meta-workflow. We compare those workflows from the 
long list of possible candidates that we are familiar with, such as Kepler [2], [8], D2K 
[23], D2KSL, OGRE, Ensemble Broker [34], and ArcGIS ModelBuilder [35]. 
Comparisons with other workflows might be performed in a similar way, for instance, 
with SciFlo [28],[29], DAGMan [32], CCA [33] or Taverna [31].    
 
The discrimination between the meta-workflow presented in this work and any single 
engine workflow, lies clearly in the number of execution engines used and workflow-to-
workflow translations. There are numerous efforts to allow module-reuse across engines 
including one to link D2K [23] and Kepler [2], [8] occurring within NLADR [38]. These 
efforts start to address issues of matching the syntax of data structures and error 
reporting. Our meta-workflow effort in comparison with other efforts of module-reuse 
across workflow engines could be described as the development of a framework for (a) 
consistent inclusion of many workflow engines, (b) automatic syntactic data structure 
translations between heterogeneous workflows, (c) user friendly inclusion of new tools 
and creation of workflows, and (d) formation of workflows from tools with higher 
semantic meaning than the meaning of components in workflows. 
 
The discrimination between the meta-workflow and linear workflow environments is in 
the capability of meta-workflows to form direct acyclic graphs (DAGs) of workflows as 
opposed to just linear graphs of workflows. For example, D2KSL is one effort that has 
tried to address the need for a simpler interface for end users constructing large-scale 
end-to-end processes. It incorporates some workflow-by-example (task graph is in a 
separate pane and not in the main user interface), but limits itself to a linear task model.  
 
In the Grid community [5], several workflow environments have been developed to 
support high performance computing aspects of scientific analyses. The focus of these 
efforts is primarily on the execution of workflows, for example, OGRE and Ensemble 
Broker developed for the NSF ITR LEAD project [34]. The work is currently focused on 
large scale executions (thousands of runs in ensembles) on the grid of computers but 
otherwise the effort shares the goals of our work. Our meta-workflow currently focuses 
more on the simplicity of end user interactions with information technologies while 
utilizing all execution mechanisms transparently. In our meta-workflow approach we 
concentrate on simplifications of all human interaction interfaces with technology 
components and attempt to hide all software setup, representation and execution 
intricacies from the end users in order for scientists to solve complex domain scientific 
problems at a high level of abstraction. We expect continuing interaction between the 
development teams and sharing of design concepts and technologies so that the meta-
workflow efforts can merge in the future (e.g., the meta-workflow engine of Ensemble 
broker and the meta-workflow editor and information browsers from our effort could 
form the next generation meta-workflow framework). 
 
With the increased maturity of web services, workflow environments could also be built 
by wrapping all existing functionality into web services and orchestrating workflow 
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executions with web service layers to tools. The objective is to wrap fragments of code 
(modules) in web services and integrate them module-by-module. This approach is 
appealing mainly to the business community and commercial applications, e.g., ArcGIS 
ModelBuilder [35] as an example of geospatial data analysis provider. The past several 
efforts led to business process workflow architectures, such as FlowMark (later became 
IBM Web Sphere), WSFL (later merged with XLANG) and BPEL. In parallel, there were 
efforts to develop scientific workflows from scratch since the inclusion of grid computing 
that has not been aligned with web services requires new development [1]. The list of 
scientific workflow architectures includes DAGMan, Taverna, GridFlow and Grid Ant, 
Triana and GSFL, just to mention a few. The most adapted standard for web services has 
become the Business Process Execution Language (BPEL)[36]. The BPEL development 
focus has been so far primarily on the executors. The existing BPEL editors for forming 
BPEL-based workflows are built for developers rather than for scientists.  Emmerich et al 
[1] asked a set of questions about BPEL suitability for scientific workflows with some 
positive answers.  
 
Various projects and efforts in the past have chosen the direction towards web and grid 
services. However, these projects did not necessarily address (a) exploring the fragment 
structure hidden within web services (the hierarchical structure and organization of 
software and semantics), or (b) interacting and modifying the fragment run by the 
services. The former one was addressed in the Taverna project [31], where the effort has 
made progress on describing services semantically and allowing researchers to describe 
their processes at a higher level. Thus, researchers could focus on their scientific process 
rather than on the selection of particular modules/services. The latter one was addressed 
in a research prototype of 3D medical volume reconstruction using D2K web services 
[21], [22]. Nonetheless, based on the current web service technology state, the web 
service approach to meta-workflows currently poses difficulties when it comes to 
incorporating friendly user interactions, scalability for large data sets or fault-tolerance. 
Given the nature of scientific interactive explorations and discovery processes that define 
meta-workflow requirements, we decided to build our meta-workflow architecture by 
supporting inclusion of web services but not by demanding code fragments to be web 
services. 
 

2.2 Comparison with Current Workflow Paradigms 
 
In general, one could follow four types of workflow paradigms when designing a new 
meta-workflow system. These four workflow paradigms refer to the fact that depending 
on what is the “flowing” element within a workflow environment workflows could be 
denoted as data-flows, code-flows, control-flows and hardware-flows. The flowing 
element could be (1) data to hardware and software resources for data-flows (e.g., 3D 
volume reconstruction needing computational resources and sophisticated registration 
software), (2) software code to data locations and hardware resources for code-flows 
(e.g., data mining of large databases of water quality data), (3) control commands to 
cooperatively use generated data with distributed software and hardware resources for 
control-flow (e.g., booking a hotel and a rental car after airline ticket reservation) , and 
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(4) hardware to data locations and software resources for hardware-flows (e.g., spatial re-
configuration of ‘smart’ wireless sensors to confirm indoor hazards).  
 Data-flows are primarily used in the scientific community (e.g., e-Science, global 
grid forum) while the control-flows are popular in the business community (e.g., 
BPEL2WS, IBM’s WSFL, Microsoft’s XLANG). Code-flows pose challenges on prior 
installations of software environments where any code could be executed and hence have 
not been used too frequently. The presentation of the hardware-flow concept is novel in 
this paper since the ‘smart’ wireless sensor technology has not reached the maturity to 
address the hardware-flow execution. Given the workflow paradigm classifications, our 
meta-workflow can be viewed as a combination of data-flow and control-flow as it will 
be explained in the next section. 
 

2.3 Complexity Comparisons 
 
The concept of meta-workflows can also be illustrated in terms of software complexity 
(see Table 1). The columns of Table 1 represent granularity of software complexity. The 
rows correspond to characteristics of software relevant to workflow environments. Each 
cell in the table gives a very short description of how characteristics are supported at a 
given complexity level. 
 
From the software complexity view point, a meta-workflow application programming 
interface (API) is not more complex than a program function API. However, meta-
workflow representation and execution deal not only with a module API that addresses 
data going in/out and error/security mechanisms similar to every workflow but also with 
engine type and registry information in the API, coupled with mechanisms to 
translate/integrate the syntax of data flow between engine types and to move data.  
 
Table 1: Illustration of increasing software complexity. The abbreviations WF and MWF 
denote workflow and meta-workflow respectively. API stands for application 
programming interface.  
Characteristics\ 
Complexity 

Program 
Function 

Software 
Application 

Workflow Meta-
Workflow 

API Function name 
and arguments 

Class and 
function list 

WF 
composition 
and module 
list 

MWF 
composition 
and tool list 

Execution Single 
programming 
language 
executor 

Multiple 
programming 
language 
executors 

Single WF 
composition 
executor 

MWF 
composition 
executor 

Error recovery 
and check 
pointing 

N/A Between function 
calls 

Between 
modules 

Between tools

Security 
(communication 

Execution Execution and 
communication 

Execution and 
communicatio

Execution and 
communicatio
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and execution) between function 
calls 

n between 
modules 

n between 
tools 

Documentation e.g., Java doc Get Application 
info 

Get WF info Get MWF 
info 

Discovery of 
functionality and 
API 

N/A Reflection Module 
Hierarchy 

Registries of 
tools, data 
and resources 

 
We also present the concept of meta-workflows in terms of the level of problem 
abstraction (see Table 2). From this view point, Table 2 illustrates three application 
driven examples. Let us suppose that one would like to solve a set of complex Maxwell’s 
equations given some boundary conditions. The software and problem solution have to 
contain the implementations of a program function “addition”. The addition function is 
one part of a calculator performing any algebraic operation. The calculator becomes a 
part of a workflow that could partially solve one Maxwell’s equation. In order to solve all 
Maxwell’s equations simultaneously, the workflow becomes one part of the composition 
of multiple workflows that is denoted as a meta-workflow. Similarly, one could describe 
the other examples in Table 2 about understanding causes and consequences of 
hydrologic variables, and predicting bacterial loadings to coastal waterbodies. 
 
In these examples, a meta-workflow solution has to deal with discovery and organization 
of modules that would be not only under the control of a small group similar to workflow 
solutions but also under the research and development of communities and third parties. 
Meta-workflow also has to incorporate changes represented and managed using registries 
of third party fragments, and aggregate across registries that might appear for particular 
engines, or include special security requirements.  
 
Table 2:  Illustrations of the application driven meta-workflows  
Example\Complexity Program 

Function 
Software 
Application 

Workflow Meta-
Workflow 

Solve Maxwell’s 
equations to perform 
radar electro-magnetics 
prediction of a vehicle 

Operation 
plus 

Calculator 
for 
performing 
(A operand 
B) 

Complicated 
formula 
requiring 
multiple 
calculators 

Multiple 
complicated 
formulas that 
have to be 
solved 
simultaneously

Understanding causes and 
consequences of 
hydrologic variables 
 

Geographic 
coordinate 
projection 

Spatial 
integration 
of raster data 

Spatial, 
temporal 
and spectral 
integration 
of raster and 
vector data 

Prediction 
modeling and 
spatial 
analysis of 
integrated data 
sets 

Predicting bacterial 
loadings to coastal 
waterbodies  

Delineate 
watershed 

Calculate 
point and 
non-point 
bacterial 

Schematic 
processor 
model of 
bacterial 

Optimization 
of processor 
model 
parameters 
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loading loading 
 
Finally, the concept of meta-workflows is illustrated in terms of complexity of user 
interactions. User interactions include user inputs related to a domain-specific problem, 
and interfaces to formation and execution of a sequence of processing steps. If we 
consider the problem of understanding causes and consequences of hydrologic variables 
then user interactions could be described by a flow of domain-specific user inputs (see 
Figure 1) and by interfaces to formation and execution of a linked graph of tools (see 
Figure 2).  Meta-workflow has to provide low-complexity user-friendly interfaces that 
would be understandable by scientists from multiple communities. The meta-workflow 
interfaces has to address not only linking of tools (e.g., drag and drop followed by 
connecting inputs and outputs of tools) similar to workflow solutions but also better 
searching, filtering and sorting capabilities to find data, tools and computational 
resources, as well as improved capabilities for creations of meta-workflows by example 
and for batch processing with a rich set of personalized settings and enabled system 
feedback options.. 
 

 
Figure 1: An example of flow of user inputs that would be represented by meta-
workflows.  
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Figure 2: A mockup example of a composition of a connected graph of semantically high 
level tools. The example shows tool descriptions (inside of each box) and heterogeneous 
engines (above each box).  The tools can be selected from a registry organized in this 
example into ‘Data Stores’, ‘Data Transformations’ and ‘Scientific Workflows’. 
 

3 Meta-Workflow Requirements 
 
In this section, our goal is to go from a meta-workflow concept to a set of general 
requirements and then to a set of minimal requirements for an implementation. Our goal 
is to overview past workflow project requirements to identify a common set of general 
requirements, investigate specific requirements defined by environmental, hydrological 
and medical applications and then arrive to a set of minimal requirements for a meta-
workflow implementation.  
  

3.1 Published Workflow Requirements 
 
Several publications have been published that list requirements of scientific or grid 
workflows. We list three sets of past workflow requirements. First, according to [2], the 
list of requirements for grid workflows includes: (1) authentication, (2) data movement, 
(3) remote service execution, (4) grid job submission, (5) job scheduling and resource 
management, (6) fault tolerance, (7) logging and provenance, and (8) user interaction and 
reporting. Second, according to [8], the requirement list includes: (1) seamless access to 
resources and services, (2) service composition & reuse and workflow, (3) scalability, (4) 
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detached execution, (5) reliability and fault-tolerance, (6) user interaction, (7) “smart” re-
runs, (8) “smart” (semantic) links, (9) data provenance. Third, according to [1], the 
requirement list for scientific workflow management includes: (1) defining scientific 
workflows, such as (a) basic activities (orchestration of grid services, such as control and 
data flow between basic activities, invocation of grid services, synchronization, assembly 
of the message content for grid services, extraction of results from grid services responses 
and raising faults), (b) control flow and data flow, (c) hierarchical composition, (d) 
failure handling, (2) deployment of scientific workflows, such as (a) testing grid services, 
(b) deployment, (3) enactment of scientific workflows, such as (a) concurrency, (b) 
scalability, (c) monitoring. 
 

3.2 Meta-Workflow Requirements 
 
The specific requirements from our specific meta-workflow application drivers can be 
summarized as follows: (1) highly interactive scientific workflow system, (2) problem-
solving environment, (3) integrative system of multiple workflows, (4) environment for 
re-use and re-purposing of existing software, and (5) system including data and workflow 
provenance (provenance indicates the series of interconnected experimental and 
processing steps that have produced the data). These requirements can be related to the 
common workflow requirements by an approximate consolidation of terminology.  
 
Our current set of minimal requirements for a meta-workflow implementation is based on 
combining the past workflow requirements and prioritizing them according to our 
specific meta-workflow application drivers. Thus, the consolidated requirements could be 
described as follows: (1) create an editor for user friendly meta-workflow composition, 
(2) integrate multiple workflow engines, (3) support re-using and re-purposing meta-
workflows, (4) enable run-time user interaction and a batch mode execution, (5) provide 
interoperable access to data and tools (web services), (6) provide registry of tools, (7) 
support provenance, (8) use standards and standard technologies (XML, web services), 
(9) incorporate error handling and check pointing, (10) incorporate security, and (11) 
incorporate grid computing.  
 
While other requirements, like smart reruns, might set directions where workflow 
development should go, we have concentrated on defining minimal requirements for a 
state-of-the-art meta-workflow implementation. The ranked ordered list of requirements 
above represents our directions for including functionalities in our NCSA meta-workflow 
implementation. 
 
We foresee additional requirements coming from other types of high-level science 
processes, where meta-workflows might be more appropriate than workflows. For 
instance, Monte Carlo simulation or optimization tasks could serve as examples, where 
one workflow/tool needs to be wrapped around another or multiple tools form a closed 
loop (output of one tools is fed to input of another tool). While we have not included 
support of wrappers and loops in our list of specific requirements, we plan on learning the 
needs of communities in the future to support hierarchical structures of meta-workflows 
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(wrappers of meta-workflow can form workflows) and looping structures of meta-
workflows (closed loops of interconnected tools), as well as classification rules of 
communities to define a semantically meaningful tool. 
 

4 NCSA Meta-Workflow as Part of Cyber-Environments 
 
The core of NCSA’s efforts over the next several years will be to provide scientific and 
engineering communities with an integrated set of tools and services Cyber-environments 
that allow these communities to realize the full potential of the national cyber-
infrastructure in their research, development, and teaching activities (see Appendix A). 
Cyber-environments will provide an interface to local and shared instruments and sensor 
networks, data stores, computational capabilities, and analysis and visualization services 
within a secure framework enabling management of complex projects, automation of 
processes, and collaboration with colleagues both near and far.  
 
While cyber-environments are often currently thought of as gateways to large-scale 
computational capabilities and community data stores, or as collaboration spaces, this 
definition will need to be extended in a number of directions to adequately match the 
needs of scientists and engineers over the next 5 years.  As researchers attempt to 
understand more complex phenomena, e.g. ones involving very high-dimensional 
phenomena and networks of interacting processes, and attempt to apply their research to 
the solution of societal concerns, cyber-environments must support them in managing 
larger-scale and more complex scientific projects and processes. Cyber-environments 
must support users in managing the more diverse and larger-scale experimental, 
computational, and data resources required to characterize and model complex 
phenomena. Cyber-environments must bridge local, institutional, and national CI to 
create a seamless environment that assures the most powerful and effective techniques 
are always brought to bear and that enables researchers to quickly scale their techniques 
from local proof-of-concept to full-scale analyses. Cyber-environments must assist in the 
bi-directional connection between raw/group research artifacts (data, notes, plans, etc.) 
and published artifacts (vetted data, annotations, best practices, reviews, and papers) to 
enhance the flow of information between basic research and application. Similar 
mechanisms will be required to close the gap between textbook science and current 
research and engineering understanding and practice, thereby enhancing our ability to 
train the next generation of researchers and inform the general public. 
 
To support these capabilities, the NCSA meta-workflow effort aims at providing users 
with higher-level abstractions, above the currently available cyber-infrastructure, and 
additional capabilities for automating or semi-automating processes. Additional tools for 
meta-workflow will be needed for, for example, integrating many types of data, planning 
optimal experiments, and monitoring, sharing, and validating, research protocols. The 
concept of Visual Knowledge Discovery, using data analytics to categorize, cluster, and 
extract features from large data sources coupled with interactive visualization to allow 
users to quickly digest data and build understanding, is a prime example of this. 
Similarly, capabilities to manage semantic information about data and resources will be a 
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general enabler of higher-level capabilities such as provenance tracking, annotation, and 
collaborative data curation capabilities, as well as recommender systems using social 
network analysis and network analysis of data quality. These capabilities have been 
incorporated into the NCSA meta-workflow design.  
 
Additionally, cyber-environment design and development methodologies need to change 
to support large scale deployment and to significantly reduce the costs of coordination 
involved in creating, adapting, and evolving cyber-environments. Cyber-environments 
must transition from being thought of as the product of one-time development projects to 
being considered as living infrastructure that will evolve with technology and with the 
scientific and engineering discoveries and understanding over decades. Towards this end, 
NCSA must build cyber-environments on the principles of sustainability and adaptability 
using current and emerging techniques such as web and grid services, 
translating/integrating middleware (e.g. MyProxy), global unique identifiers and 
metadata, workflow, meta-workflow and provenance, and semantic descriptions of 
resources and data. These types of technologies lower the architectural coupling of cyber-
infrastructure and cyber-environment components while maintaining end-to-end 
capabilities.  
 

5 Architecture of NCSA Meta-workflow Prototype Called 
CyberIntegrator 

 
The objective of the NCSA meta-workflow prototype called CyberIntegrator is to create a 
quick practical mechanism for (a) integrating software tools across a particular set of 
engines, (b) investigating ideas to simplify the interface and (c) providing initial 
integration into community cyber-environments. The goal of the NCSA meta-workflow 
effort is not to design a next generation engine but rather to enable an easy use of many 
existing heterogeneous tools in several scientific communities.  Furthermore, our effort is 
not a multi-year fundamental basic research about optimal workflow mechanisms but 
rather an applied computer science research that is guided by deep theoretical 
understanding, and driven by providing experimental features on time to our initial 
communities. 
 
In this section, we describe the design logic behind our meta-workflow architecture that 
is rooted in our theoretical analysis of the problem. We start with a system view of meta-
workflow since it helps us design the architecture. With this view, an ideal meta-
workflow could be viewed as a system for (a) browsing and searching available data, 
tools and computational resources, (b) accessing available data sets, tools and 
computational resources, (c) bringing them together using one of the workflow 
paradigms; (d) executing any tool or a sequence of tools, (e) monitoring and controlling 
executions and (f) efficiently utilizing available data, tools and computational resources.  
This system view allows us to describe issues related to meta-workflow architecture 
driven by multiple requirements (like in the Pegasus work [39]), and the key capabilities 
implemented in CyberIntegrator. When selecting the key capabilities for CyberIntegrator, 
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we looked for a reasonable functionality set that would fit into the overall web portal and 
grid cyber-environments effort at NCSA as described in the previous section. 
 
First, we explain the design of our meta-workflow system architecture called 
CyberIntegrator based on its browsing, and data-flow and control-flow characteristics 
since the consideration of these characteristics and the application-driven meta-workflow 
requirements has led us to the meta-workflow building blocks. The browsing 
characteristic refers to the fact that a user has to browse registries of data, tools and 
computational resources to form meta-workflows. The data-flow and control-flow 
characteristics define what parts of the system are dynamic (data and control commands) 
and static (code and computational resources). Thus, the building blocks of meta-
workflow architecture are described based on browsing, and data-flow and control-flow 
characteristics in Sections 5.1 and 5.2. Second, we address the roles and functionalities of 
meta-workflow building blocks in Section 5.3 
 

5.1 Meta-Workflow Architecture Including Browsers of 
Distributed Registries 

To build a meta-workflow architecture supporting characteristics of an ideal system, one 
has to establish certain access and retrieval mechanisms, management practices, software 
models, and communication protocols that are followed in order to perform integration of 
data, tools and computational resources (see commercial solutions to process 
management [16]). One could draw some parallels between the requirements imposed on 
meta-workflow development and perhaps the past requirements on the Internet Mosaic 
browser development developed at NCSA. It became clear that a browser would provide 
a mechanism for accessing and retrieving documents from URLs but the URLs had to 
conform to a certain representation.  

The design of meta-workflow architecture is explained by referring to the 
parallels mentioned above. We believe that the registries of data, tools and computational 
resources would provide the URL-like representations of all available meta-workflow 
components that could be easily created and updated by scientists as is true in the case of 
web pages. Within the context of this comparison, the meta-workflow becomes a browser 
that (a) displays available components (data, tools and computational resources), (b) 
‘hyper-links’ components (including access, retrieval, execution, management, 
communication and user interface), (c) stores component settings and references to user’s 
favorite meta-workflow components locally (like browser cookies with passwords and 
bookmarks), (d) enables searches through the registries of data, tools and computational 
resources (Google-like search, filter and sort capabilities), (e) provides history of meta-
workflow steps and (f) incorporates security and fault-tolerance features. Similarly to the 
mosaic browser development, meta-workflow component representations (the URL-like 
representations) have to be widely accepted to the advantage of all scientific 
communities. The word ‘hyper-links’ also indicates that triplets of data, tool and 
computational resource have to be linked in terms of control communication, security, 
data transfer and data conversion (if necessary). 

This view of the meta-workflow design leads to establishing browsers of 
distributed registries of data, tools and computational resources as the building blocks. It 
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also indicates the needs for searching (e.g., find matching tools), filtering (e.g., narrow 
down the number of tools based on hierarchical community grouping of tools) and 
sorting capabilities (e.g., alphabetical order or based on availability). Furthermore, it is 
important to consider the needs for secure access (data, tools and computational 
resources), and information transfers (data, control commands), as well as the needs for 
system state reporting about data and process provenance, steps and graphs of processing 
operations, on-line help, and logging statements.  

5.2 Meta-Workflow Architecture Supporting Data- and Control-
Flow 

 
Once a triplet of data, tool and computational resource has been selected, the meta-
workflow has to accommodate data- and control-flows. Based on our assumption that a 
tool and its associated computer resource are always together, we include two meta-
workflow building blocks, such as tool & computational resource (TCR) block, and data 
block. In addition, to control the meta-workflow, a block for coordinating the data flow is 
needed as illustrated in Figure 3. Figure 3 provides a system architecture where the 
building blocks (a) access information (browsers access distributed registries), (b) pass a 
user-selected triplet of input data, tool and computational resource (browsers provide 
inputs to data and TCR blocks), (c) communicate about data availability (data flow 
control block coordinates input and output data handout), (d) pass data to execute a 
processing step (delineated around each data, TCR and data block sequence) and (e) 
register output data in one of the data registries after completing the execution.  
 The data-flow aspect of meta-workflow is represented by the fact that data are 
passed from data location to tool & computational resource (TCR) location. The control-
flow aspect is established by communication of two consecutive TCR blocks, for 
example, about the availability of input/output data. According to Figure 3, when the 
first TCR block starts its execution, it registers output data in one of the data registries 
(properties and location) and other TCR blocks in the sequence can request their input 
data from the data flow control (DFC) block. The DFC block is notified by the first TCR 
block when the output data is ready and the DFC block can then notify all waiting blocks 
that their input data is ready. 
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Figure 3: Meta-workflow system architecture. 

 
Within this system architecture, a meta-workflow facilitates data transfers and 
communication control but not code transfers between multiple TCR blocks. The 
computational resources, necessary software installations, error handling, security and 
other internal TCR block issues would not be of concern to a meta-workflow.  The issues 
will be handled only at the meta-workflow level. For example, the issues related to 
security of data information would be handled by data registries divided into local and 
remote parts with different security access.   
 

5.3 Descriptions of Meta-Workflow Building Blocks 
 
The meta-workflow system architecture can also be thought of in terms of user 
interactions and expertise. From this perspective, there are components where (a) a single 
scientist works alone and interacts with meta-workflow (e.g., browsers of registries and 
editors for flow formation, re-use and re-purposing), (b) multiple scientists work 
independently and add to or modify registries of data, tools and computational resources 
(e.g., editors for registries), (c) a scientist works collaboratively with other scientists by 
using the meta-workflow information about system states, provenance (e.g., consoles for 
meta-workflow feedback), (d) software developers add support for new tools that are 
incompatible with all meta-workflow supported tools (e.g., developer’s programming 
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environment), and (e) software developers that modify or substitute execution and 
coordination of heterogeneous TCR blocks (meta-workflow engine and data flow 
control), and internal meta-workflow data representation. This description of meta-
workflow building blocks is important for meeting the design requirements of a highly 
interactive and user-friendly system (see our meta-workflow definition). 
 
Another presentation of meta-workflow building blocks is based on a coarse 
classification of the components based on their role in the system, such as (1) information 
registries, (2) system core and (3) system extensions. Information registries include 
information about data, tools and computational resources. A system core consists of a 
user friendly meta-workflow editor (including for instance, model viewer showing steps 
of meta-workflow, and on-line help), data structure representation, model of tools and 
computational resources, and execution engine. Finally, system extensions contain 
components providing additional features, such as data and process provenance, security, 
and fault-tolerance. It is assumed that a bare bone system will operate without system 
extensions. However, the bare bone system would have very limited capabilities since 
most remote tools will require security, as well as provenance for scientific collaboration 
purposes. The extensions should definitely be one part of the meta-workflow architecture 
design. The rest of this section describes each component based on this classification. 

5.3.1 Meta-workflow Information Registries 
We are planning to build a simple capability to access a local and/or grid community 
repository for data sets, with location based on user preference. This capability can 
eventually be extended to support hierarchical registries, sophisticated filtering, 
movement between registries based on community requirements for data lifecycle and so 
on. Our goal is to understand community data and tool cycles in the future to be able to 
extend our current prototype in future research and development efforts. For this purpose, 
we plan on using the knowledge and provenance information gathered from the users of 
our CyberIntegrator prototype. 
 
Data registry: This registry describes information about data sets that are registered. 
Every output data set of a tool is automatically registered in this registry. The registry 
could be on a local machine or in a central location and a user can decide where to 
register his data sets. To narrow down the list of data sets of interest, filters should be 
available for selecting data sets based on data structures, names, size, access security or 
geographic locations. Community based filters could select data based on their use 
(validation or testing), quality (uncertainty and error) or instrument types (image, point, 
boundaries). Many other search, filter and sort capabilities could be inserted based on 
individual and community preferences of data. 
Tool registry: This registry contains information about tools that are available for 
forming meta-workflows. A list of tools is retrieved from the tool registry and presented 
to a user. The list can either be located on the user’s machine, or can be kept in several 
central locations (e.g., community central locations). The central location could be used 
by workflow engines to publish their workflow. The tool registry could also contain a list 
of computational resources. When a user requests the list of tools the information could 
also be combined with the information about computational resources where the tool can 
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be executed. In our first prototype, we do not expect to have a large list of computational 
resources. However, in the future, we would explore methods for filtering this list. For 
example, we envision developing community based filters, where a community would list 
tools that are commonly used and useful for a class of analyses. Filters could also be 
based on individual preferences of tools and computational resources, as well as based on 
availability of tools and computational resources to a user. The tool registry will be 
extended by a security component to enable registry information retrieval based on access 
privileges and hence making other tools in the registry invisible to a user. 
Computational resource registry: This registry contains information about 
computational resources that are available for running each tool. Similar to tool registry 
filters, computational resource registries have to have filters in place as well. For 
example, a filter could be based on community allocated resources, security, 
computational load, geographical proximity, processor speed, shared memory size, 
number of processors, and so on. This registry is extended by a security component. 

5.3.2 Meta-workflow Core 
 
Meta-workflow editor: The role of an editor is to enable user-friendly interaction with 
meta-workflow formation and execution. The editor allows a user to browse the registry 
of data, tools and computational resources, and select a data set of interest, a tool of 
choice and a computational resource associated with the tool to complete one step of 
processing. Once the user has created a sequence of steps, a meta-workflow 
representation (data structure) can be saved and re-loaded later. The editor depends on all 
other components of meta-workflow architecture since it has to create the meta-workflow 
data structure.  
Meta-workflow data structures: The role of a meta-workflow data structure is to 
contain the information about processing steps (an execution of a set of tools). The data 
structure stores the sequence of tools, properties of each tool, and information about input 
and output data of a tool. Examples of tool properties are filenames of input-data, 
algorithmic parameters, and any other variables used in a tool. All other meta-workflow 
core components depend on the information stored in this data structure. For instance, 
one of the uses of the information in this data structure is for selecting sub-lists of tools 
that can operate on a particular data set of choice.  
Meta-workflow model of tools and computational resources: The role of this 
component is to enable an integration of new tools into the meta-workflow framework. 
Our model of a tool (and the underlying computational resources) can be thought of as a 
black box that has either inputs or outputs or both, as well as properties (see Figure 4). 
The properties also include the control parameters for each specific tool (e.g., output data 
is ready). A tool can be a workflow that is executed by a workflow engine, a web-service 
that is called, an application (such as a numerical model) that is launched, etc. 
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If a tool does not have any inputs and outputs it is considered to be a stand-alone 
application. One can still use such a tool in our meta-workflow architecture but it would 
not allow for easy linking to other tools. In this case, a user will need to select the 
location on a local disk, or on a network, where the input data and output data are stored. 
The model of meta-workflow tools and computational resources is embedded into the 
meta-workflow data structures to preserve the information about input and data, the 
engine to execute the tool, and the security to access data and computational resources 
needed. 
Meta-workflow engine: The role of an engine is to integrate and execute tools on 
heterogeneous computer platforms, consisting of but not limited to different workflow 
engines, software libraries, programming languages, hardware platforms and operating 
systems. To allow for this, the meta-workflow engine needs to be able to translate data 
from one representation to another and to execute different applications on different 
platforms. The engine takes information about the input and output data structures, the 
tool to be executed and its computational resources for executing from all information 
registries and performs the execution. 
 

5.3.3 Meta-workflow Extensions 
Security: Some tools used in the meta-workflow environment might have restrictions on 
execution, some data might have limited access only, and some computational resources 
might be available only to certain users. Security plays an important part in the meta-
workflow environment, and the meta-workflow architecture incorporates security as an 
extension. Since multiple tools will use different authentication systems, the architecture 
should provide a single sign-on mechanism that would forward the right credentials to the 
component requesting security clearance. This component will depend on outside single 
sign-on mechanisms like MyProxy. Given security requirements in many applications, 
most other meta-workflow components will depend on the security component. 
Provenance: The meta-workflow architecture is one part of a larger cyber-infrastructure. 
In scientific, business, archival and other communities, there is a need to obtain a better 
understanding of the scientific analyses, to monitor business processes and to preserve 
flows, that leads us to data provenance and information gathering about meta-workflow 
processes. For example, the provenance component records what tools a user executed, 
and what data are used and created. Similar to the security component, the provenance 

 
Figure 4: An underlying model of a tool in the meta-workflow 
architecture. 
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component is used by many other meta-workflow components. All components should 
record provenance information about user’s activities in a consistent way. 
Fault-tolerance: Another important extension is fault-tolerance to prevent losing 
intermediate results and avoiding wasting computational resources. This problem is 
addressed at the meta-workflow level by reporting job status of each processing step and 
registering output data in the data registry. Thus, if a tool failed then the status would be 
displayed in the sequence of steps and the intermediate result from the previous tool 
would be available.  
 

6 Key Capabilities of CyberIntegrator 
 
We have prototyped CyberIntegrator, a highly interactive scientific workflow system that 
aims at building complex problem-solving environments from heterogeneous tools. The 
editor of CyberIntegrator is shown in Figure 5. The description of how to use the editor 
and what system information can be obtained is provided in Section 6.1. Section 6.2 
outlines two use cases that were used for CyberIntegrator prototype development and 
testing.  
 

 
Figure 5: A screen capture of a prototype meta-workflow editor. 
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6.1 CyberIntegrator Prototype Functionality 
This section will go into detail about the current implementation and functionalities of 
CyberIntegrator meta-workflow editor, engine and registries. The current meta-workflow 
editor (see Figure 5) includes three browsers of information registries (data left, tools 
middle and executors right), execution control (below browsers) and presentation of 
system information (bottom). The browser also provides filtering capabilities based on 
data structure types and grays out tools with incompatible input and output data 
structures. This is viewed as a visual guide to data and tool selection. The preliminary 
implementation of registries is using an XML file describing properties of available data, 
tools and computational resources. We plan on following the development of community 
registries, for example, for publishing and run-time access to registries developed for the 
GIS applications based on OGC (Open GIS Consortium) and WRS (Web Registry 
Service) recommendations (see example registry services presented in [44]). The concept 
of local and central (likely remote) registries is prototyped by checking multiple XML 
files, where some of the files are specified by their URL locations. Similarly, available 
tools can be provided to a user by the executor if an executor has a limited set of local 
tools available, or can be loaded from an external file. These sets of files are currently a 
place holder for the tool registry and computational resource registry, but in the future the 
information about data, tools and computational resources will be loaded from the 
registries themselves. An example of a tool entry in the tool registry is shown in Figure 6. 
 
<tool name="Load Table" uuid="0"> 

<output name="Loaded Table" 
type="ncsa.d2k.modules.core.datatype.table.Table" id="0"/> 
<executor> 

  <d2ktoolkit itinerary="data/LoadTable.itn"> 
<output alias="Parse File To Table" port="0" 
refid="0"/>           

  </d2ktoolkit> 
 </executor> 
      <help>This will load a table from disk.</help> 
</tool>  
Figure 6: An example of a ‘Load Table’ tool in a tool registry.  
 
The CyberIntegrator execution engine currently supports tools that came from our image 
analysis libraries (Im2Learn, GeoLearn, MedVolume and I2K) [25][26][21][24], and 
visual programming workflow environment developed for data mining applications 
(D2K) [23]. Other tools that are based on Kepler and Ptolemy II (a scientific workflow 
environment supporting geospatial and other applications), MS Excel (macro execution), 
NIH ImageJ (image manipulation), and ArcGIS (georeferencing tools) are currently 
being investigated for inclusion. Currently to support the above workflow engines, web 
services and libraries with the meta-workflow engine, an abstraction was made in such a 
way that each workflow engine is wrapped as an executor. The executor knows how to 
start any specific workflow environment and how to pass the arguments and properties to 
this environment. The amount of work and the level of expertise to add any new tool are 
being evaluated for the tools listed above. The solution to the problem of converting 
semantically similar data structures that have dissimilar syntax but are needed for linking 
tools has not been fully implemented. The on-going effort is to develop a linked graph of 
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data structure conversions that could automatically convert semantically compatible data 
structures if a path connecting two nodes (structures) exists in the graph. 
 
The meta-workflow formation by example (step by step process with an immediate 
execution) is enabled by choosing a triplet of data, tool and executor (name of the 
machine where the tool will run) and pressing the Execute button. The formation for 
batch execution is achieved by setting the editor to a dummy engine mode. The dummy 
engine will take a tool and ‘pretend’ that the tool actually ran. It will create new meta-
workflow data structures to enable linking tools, but will not actually execute the tools or 
store any actual data in the meta-workflow data structures. The meta-workflow that is 
created this way can be stored and reloaded at a later time. If it is reloaded in the 
immediate execution mode then each step in the meta-workflow would be executed. 
 
The presentation of system information (bottom of the editor shown in Figure 5) 
currently includes on-line help for each tool (help tab), a sequence of executed steps 
(steps tab), provenance about user’s activities (provenance tab), meta-workflow model 
viewer of the linked sequence of tools (graphs tab) and logging information about job 
execution (log tab). The on-line help is important to provide a friendly use of tools. Each 
tool found in the tool registry comes with its on-line documentation. The steps tab shows 
information about the sequence of processing steps (time, execution status, input and 
output) as illustrated in Figure 7.  
 

 
Figure 7: Meta-workflow information about a sequence of processing steps and its execution 
status.  
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The provenance tab provides meta-data about user’s activities. We view the provenance 
information as our input to other cyber-infrastructure components that focus more on 
meta-data (semantic web aspects of CI) and a community-based recommendation 
mechanism (social network aspects of CI). The provenance data are represented currently 
as triples with (subject, predicate and object) [27]. More elaborate taxonomy and 
ontology representations [45], as well mechanisms for interfacing the provenance meta-
data [42], [43], would be considered in the future. In our current case, the triplets are 
extended with a timestamp and the name of the user that created the triplet. The editor 
will receive the provenance information and make it visible to an end user in the 
provenance view. While it is important to have unique persistent names for each object 
and action, we plan on mapping the terms to more user friendly titles for display. The 
current provenance view uses the following output format: 
 
Time: Function [Subject (Engine), Predicate (action), Object (tool & input)] by User 
 
For example, an example of provenance information would be decomposed into sub-
strings as follows: 
Provenance information=1134672216511 : ADD 
[http://enviroci.ncsa.uiuc.edu/md/MultiThreaded_55ba25f4-2585-4811-bda6-
e927329e8390 startExecute http://enviroci.ncsa.uiuc.edu/md/step_43dae4b3-4f71-4a9e-
add8-0e1542a064e1] by http://enviroci.ncsa.uiuc.edu/md/anonymous 
 
Provenance information sub-strings:  
time=1134672216511  
function= ADD  
Subject(engine)= http://enviroci.ncsa.uiuc.edu/md/MultiThreaded_55ba25f4-2585-4811-
bda6-e927329e8390,  
Predicate (action) = startExecute  
Object (tool & input) = http://enviroci.ncsa.uiuc.edu/md/step_43dae4b3-4f71-4a9e-add8-
0e1542a064e1  
by User = http://enviroci.ncsa.uiuc.edu/md/anonymous 
 
The graph tab is illustrated in Figure 5. It shows how inputs and outputs of multiple tools 
were inter-connected. Finally, the log tab is also available for informing a user about his 
job execution. While executing meta-workflow, each tool of the meta-workflow 
framework might report messages. These messages could be relevant to the performed 
analyses (e.g., preliminary numerical results) or correspond to the state of the execution 
(e.g., debug statements and internal code warnings). A user can set the type of log 
messages in the meta-workflow editor. An example of log messages is provided below, 
where the syntax follows the structure (Time | Message type | Message). 
 
16379350 DEBUG [Timer-1] ncsa.d2k.ws.client.JobStatusChangeMonitor - Status 
monitor is shutting down. 
16377648 DEBUG [Timer-1] ncsa.d2k.ws.client.JobStatusChangeMonitor - Job status 
changed ncsa.d2k.ws.server.JobBean@1c47573 
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16377567 DEBUG [Timer-1] ncsa.d2k.ws.client.JobStatusChangeMonitor - In 
StatusPollTask.run() 
 

6.2 Meta-workflow Use Cases 
During the meta-workflow prototype development and testing, we used two sets of tools 
driven by (1) the 3D medical volume reconstruction problem [22], [21]and (2) the 
problem of understanding inter-variable relationships among terrestrial and hydrological 
variables [19], [20].  
 
First, the 3D volume reconstruction problem consists of linking together three tools. 
Tool#1 allows a user to load images to be registered, and performs image preprocessing 
to support semi-automated control point selection for registration (image segmentation 
pre-processing to compute centroid locations of image structures). Using this tool, a user 
selects at least three pairs of control points for estimating an affine transformation. 
Then, Tool#2 is executed by taking the control points selected from Tool#1 and using 
web services and high-performance computing (HPC) resources at NCSA to compute the 
affine transformation parameters and transforming sets of images accordingly. 
A user can execute Tool#1 and Tool#2 until the results are satisfactory. Tool#3 retrieves 
registered data from Tool#2 and displays them. The execution of these three tools 
integrates I2K image analysis library, and D2K web services. Tool#2 can be executed 
either by using D2K web services or D2KToolkit (workflow environment engine). The 
test images came from a fluorescent confocal laser scanning microscope and were 
acquired by scanning multiple cross sections of uveal melanoma tissue at UIC. 
 
Second, the problem of understanding inter-variable relationships was analyzed using 
data sets obtained from NASA remote sensing sources (e.g., the MODIS AQUA and 
TERRA satellites). Tool#1 allows a user to pre-process NASA HDF EOS remote sensing 
data. This step is about extracting multiple raster files (images) from HDF EOS, pre-
processing the files based on quality control requirements and integrating them. Tool#2 
pre-processes NASA SRTM  elevation maps to extract features, such as slope, aspect, 
flow accumulation etc. Tool#3 takes outputs of Tool#1 or Tool#2 or loads any other geo-
spatial raster data and integrates them into a stack of raster variables with a consistent 
spatial and temporal resolution, as well as geographic location (mosaicking problem) and 
geographic projection. Tool#4 allows loading vector files (boundaries), and integrating 
raster and vector files resulting in a boundary membership mask. Tool#5 enables a user to 
select boundaries of interest and extract variables from the stack of images to a table 
(table rows represent pixel locations and columns represent variables). Tool#6 lets a user 
select input and output variables for data-driven modeling. Tool#7 takes tabular data and 
the list of input and output variables, and computes a data-mining model. Tool#8 
computes input variable relevance value with respect to the predicted output variables 
and visualizes the model prediction, prediction error and input variable relevance in geo-
spatial domain. The execution of these tools integrates GeoLearn, Im2Learn and D2K. 
 
We have not delved so far into the issue of the semantic classification of solutions into 
tools. The tools in the test scenarios were formed based on separating heterogeneous 
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execution technologies, e.g., I2K, D2KToolkit and D2KServer. The tools described for 
the second test example are very likely at too fine a semantic and complexity level. For 
example, the tools #6 and #7 should be combined in a single tool, as well as potentially 
tools #3, #4 and #5. We believe that the semantic classifications would be more 
appropriate in the future. The classification will have to come from scientific 
communities and would be based on semantics and complexity levels of problems and 
their associated sub-solutions.  
 

7 Summary 
 
This paper focused primarily on the problem of designing a highly interactive scientific 
meta-workflow system. We explained the need for a meta-workflow view of scientific 
problems that addresses a class of complex informatics problems. We reviewed 
thoroughly workflow requirements presented in the past to formulate our set of meta-
workflow requirements. Next, we presented the NCSA cyber-environments and the role 
of meta-workflow in it. We introduced the design logic behind the NCSA meta-workflow 
architecture called CyberIntegrator. Based on multiple views of the system architecture, 
the meta-workflow architecture building blocks were described. Finally, key capabilities 
of our meta-workflow prototype implementation called CyberIntegrator were 
demonstrated with two use cases. The two use cases include 3D medical volume 
reconstruction and a data-driven investigation of inter-variable relationships among 
terrestrial and hydrological variables. The characteristics of our current meta-workflow 
architecture enable users (1) to browse registries of data, tools and computational 
resources, (2) to create meta-workflows by example or for batch processing, (3) to re-use 
and re-purpose meta-workflows, (4) to execute meta-workflows locally or remotely, and 
(5) to incorporate heterogeneous tools and link them transparently. In the future, we plan 
on implementing all features described in the meta-workflow architecture to provide a 
practical tool for communities we have been working with. 
 

8 Appendix A: URLs of Institutions Working on Cyber-
infrastructure 

 
This is the list provided at the NSF web site: 

• National Center for Supercomputing Applications (NCSA), http://www.ncsa.uiuc.edu.  
• Ohio Supercomputing Center, http://www.osc.edu .  
• Pittsburgh Supercomputing Center, http://www.psc.edu .  
• San Diego Supercomputer Center (SDSC) at UCSD, http://www.sdsc.edu.  
• Extensible TeraGrid Facility, http://www.teragrid.org.  
• Internet2, http://www.internet2.org.  
• NSF Middleware Initiative (NMI), http://www.nsf-middleware.org .  
• Condor, http://www.cs.wisc.edu/condor .  
• Globus Alliance, http://www.globus.org .  
• Globus World website, http://www.globusworld.org.  
• AccessGrid, http://www.access.org  
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• Web Services Activity, http://www.w3.org/2002/ws  
• Semantic Web Activity, http://www.w3.org/2001/sw.  
• DataGrid Project, http://eu-datagrid.web.cern.ch/eu-datagrid.  
• Global Grid Forum, http://www.gridforum.org  
• Center for Embedded Networked Sensing, http://cens.ucla.edu  
• Science of Collaboratories, http://www.scienceofcollaboratories.org/.  
• InfoVis Cyberinfrastructure, http://iv.slis.indiana.edu  
• Workshop on Synthesizing Management Models for Cyberinfrastructure, 

http://www.si.umich.edu/cyber/july292003  
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